[8]

Tense and Temporality:
Computing and the Logic
of Time

Troy Kaighin Astarte

This chapter explores the role of time in logic, from
ancient history to modern computing. It provides an
outline and primer on the development of tense logic,
and explores how these ideas found their way into
computer science. The chapter examines how certain
philosophical problems in this space saw new light as
technical questions, and explores the role of logic in
computer science.

1. Introduction

The consideration of time in logic is both ancient and thoroughly modern.
From Greek philosophy to computer science, investigation into tensed log-
ical statements showed they increase the expressiveness of a logic and its
connection with the real world, but also its complexity. While the classic
Aristotelian view was that a statement could change its truth value with time,
this became theologically concerning when examining statements about
determinism and the omniscience of God. Debate on the logic of time saw
detailed and thorough treatment only in the 1950s when A. N. Prior developed
“tense logic,” a form of modal logic' in which notions of time and contingency

1 This branch of logic concerns predicates which express possibility or certainty, typically
through “possibly” and “necessarily” operators. Such logics are often evaluated by



256 Computing Cultures

are expressed as modalities. Although Prior saw an immediate application to
computing, the ideas broke into this field only in the 1970s, and via alternate
means.

In the late 1960s Zohar Manna was working on systems for proving ter-
mination of programs. Rod Burstall took some of Manna’s ideas and gave
them a different notation in a 1974 paper—and made the connection to modal
and temporal operators. Meanwhile, Amir Pnueli, who had worked along-
side Manna and Nissim Francez on cyclical programs, took Burstall’s ideas
and applied them to concurrent behavior, naming this “The temporal logic of
programs.” Concurrent systems are those in which different components act
simultaneously while sharing certain resources; they are mandated by the
presence of hardware which operates at different speeds, and concurrent
behavior may be deliberately introduced into programs for performance
benefits or to model real-world parallel systems. Handling the behavior of
such programs has been recognized as a difficult task since at least the 1950s,2
and the 1970s saw the emergence of various theoretical frameworks—of
which temporal logic is one—for modeling and reasoning about concurrent
behavior.

The case of temporal logic demonstrates an example of ancient ideas consid-
ered purely philosophical ending up with serious practical applications. One
interesting facet of this is the rediscovery of many old problems in new con-
texts. Computer scientists working with temporal logic came up against and
argued about issues such as whether time should be considered branching
or linear; the interpretation of future tensed propositions in the present; and
the creation of appropriate models for logical systems. In most cases, these
computer scientists considered these problems while being entirely unaware
of the history behind them.

This chapter explores the “logic” background of temporal logic and inves-
tigates how the ideas came into computing. It considers the early field of
temporal logic and shows examples of old arguments recurring in new con-
texts. It begins with a brief overview of some pre-modern views of logic in
time, before considering some areas of particular interest that re-emerge
in the computing era. Prior’s tense logic is introduced, and then the routes
by which these ideas made their way into computer science literature is
examined. Temporal logic for concurrency is then discussed and the earlier

means of a “possible world” semantics which allows the linking of modal propositions.
Neither the logic itself nor its history is discussed in detail here; the interested reader is
referred to Hughes and Cresswell (1968) as a standard reference or Goldblatt (2006) for
its history.

2 The major challenge is preventing harmful interference, which can arise when different
concurrent agents access a resource simultaneously. See Astarte (2023) for discussion of
the historical emergence of this problem and some of the ways to address it.



Tense and Temporality

problems are reintroduced; the chapter concludes by considering what this
story says about the role of logic in computer science. The case is made that
temporal logic, like much of theoretical computer science, sits neither in
logic nor mathematics, nor within the practical toolset of the everyday pro-
grammer, but somewhere else entirely.

A large part of the material in this chapter on the pre-computing era draws
from the analysis by @hrstrem and Hasle (2007), who provide both con-
textually accurate and modern rephrasing of historical logic systems. A final
note on terminology: in this chapter, “tense logic” is taken to refer to the logic
of Prior and others, working outside a computing context; “temporal logic” will
denote such logic ideas applied to computing.

2. Old Problems, Old Logics

An early problem, discussed in the work of Aristotle, was how to cope with

the inherent unknowability of the future (@hrstrem and Hasle 2007, 81.1). In
“On Interpretation” (Chapter I1X), the example is presented of a potential fight
happening at sea tomorrow. We use Fs to denote the statement “There will be
a sea fight tomorrow,” for reasons which will become apparent later. The ques-
tion is: How can the truth of Fs be interpreted today?

If there are two potential outcomes which are opposite—a fight, or no fight—
and neither of these is contingent on anything today, but everything which
happens (i.e., every true statement) is necessitated, then there is no way to
determine right now whether Fs or its negation is true. Aristotle recognized
the modality of this situation: If tomorrow there is indeed a fight, making

Fs true yesterday, did that make it also necessary? And if tomorrow there is
no fight, was Fs not possible yesterday? Aristotle’s perspective was that the
past and present are deterministic, but the future is not. All true statements
about the past and present are necessary, but true statements about the
future might only be possible. This, however, created a disquieting asymmetry
between past and future.

One way to interpret Aristotle’s position was reasoned out by Richard of
Lavenham (c. 1380) starting with the idea that it might simply be impossible
to interpret statements like Fs (@hrstrgm 1983). To many religious logicians,
like Lavenham, this was problematic due to God’'s omniscience and the future
being deterministic was equally unappealing. Lavenham'’s solution was to
reject the necessity of the past. An alternative approach, favored by Jan
tukasiewicz (1873-1956), was to reject the law of the excluded middle, and
introduce a third truth value, “undetermined,” which could be the result of
evaluating statements like Fs (@hrstrgm and Hasle 2020).

257



258 Computing Cultures

Today Tomorrow

Sea fight
s

Fs/
T

[Fig. 1] Aristotle’s sea fight example

No Sea fight
-s

More relevant for the current chapter, another interpretation of Aristotle was
put forward by William of Ockham, and later Peirce, which allowed both the
excluded middle for future propositions, and non-determinism of the future.
These were reasoned out into full modern logical systems by Prior (1967). The
idea was to reject the classical view of time as a single line.

The alternative was to view the future as branching out from the present like
atree, in a series of different possibilities. A simple illustration of the sea-fight
branch can be seen in Figure 1. The present can even be considered as one of
a set of potential presents along various parallel lines of time, no longer acces-
sible due to previous forks. As time progresses, one of the possible futures
becomes the present, and then the past, leaving an asymmetric tree with the
past as a line.

Using this branched notion of time allowed Prior to develop a few ways to
address the knowability of future events. One is that all future paths are true
until they reach the present and are evaluated, though Prior didn’t care for
that one. After Ockham, the most religiously satisfying view is that only one
future is true but is as yet unknowable to mere humans. Finally, after Peirce,
another interpretation of future propositions is that they are true only when
true in all possible futures. Branching approaches like these, especially the
second, allowed logicians to solve the omniscience problem: while to a human
the various potential paths might be unknown and therefore subject to free
will, God is able to identify which future is the real one.

Prior’s contributions to the logic of time are not confined to the branching
structure thereof; the next section examines his work and sources of
inspiration.



Tense and Temporality

3. Prior and Before

Arthur Norman Prior (1916-1969) was born in New Zealand and brought up a
devout Christian, even intending to follow a career as a Presbyterian minister
while he studied philosophy at the University of Otago (Copeland 2020). Prior’s
early interests lay in ethical philosophy, and the relationship between free will
and omniscience. He was introduced to logic by one of his tutors, John Findlay.
Prior favored realism over idealism and was opposed to purely formal logic in
philosophy, writing that logic was useless unless it helps describe the world
(Jakobsen 2020). After a little work on ethical logic, Prior became interested

in the history of logic. Likely inspired by Findlay, who had sketched some
propositions for a calculus of time, Prior began to study, among others, Peirce,
tukasziewicz, and Boole.

Boole had written about time in the context of probability, assigning “simple”
propositions a numerical value between o and 1, combining them with alge-
braic laws to create more complex events (@hrstrem and Hasle 2007, §2.1).
However, he introduced an interesting “surreptitious” shift in which these
values represented not the probability of the events occurring, but rather
the truth of statements that those events occurred (Durand-Richard 2023).
This allowed him to sidestep the philosophically challenging problem of
ascertaining the true independence of events. Prior shared Boole’s belief
in the importance of finding a role for time in symbolic algebra, though

he felt Boole's logic, lacking specific operators for tensed statements, was
insufficiently rich (Prior 1957, Appendix A).

Like the medieval scholars he had studied, Prior believed that since human
speech naturally contains many tensed statements, any system of logic
which purports to describe the world as experienced by humans must be
equally rich in its ability to express temporal notions. Critically, Prior held
that sentences like “Socrates is sitting” must be viewed as complete without
needing extra components such as “at time t” to become interpretable (2hr-
strem and Hasle 2007, §2.5).

Prior's approach here came from his historical knowledge, especially Peirce
and tukasiewicz. Peirce too had studied medieval logic and used concepts
from this in his semiotics, though he believed that the early 20th century was
not the right time to bring temporal aspects back into logic (ibid., §2.2). Peirce
related modality with time by connecting “actuality” with the past and present,
and “possibility” and “necessity” with the future, which enabled his view of the
future as a set of branching possibilities, and his proposal for rationalizing the
apparently competing doctrines of human consciousness, omniscience, and
determinism.

259



260 Computing Cultures

tukasiewicz's work in the 1920s and 30s had established a new “Polish” school
of logic, cementing the logical paradigm in which Prior later worked. One
relevant facet of that approach was the translation of historical logical systems
into symbolic ones, thereby allowing their properties to be analyzed alongside
modern logic. Just as Prior would, tukasiewicz used concepts from ancient
and medieval logic in his original work (Simons 2021). This was present in his
interpretation of Aristotle as describing a contingent future view that rejected
bivalence in favor of a third, “possible,” truth value. Though Prior did not him-
self favor trivalence, he was full of praise for tukasiewicz in many other ways,
and made extensive use of his Polish notation.?

Armed with this inspiration, Prior developed a number of systems he called
“tense logic” based on the ordering of events in time. He took the universe of
possible worlds from modal logic into the temporal domain as instants in time
and the accessibility relation between these instants became sequentiality.

In this context, the modal “necessity” operator became a temporal “always,”
and “possibility” became “at some point.” Prior presented his work in the John
Locke series of lectures in Oxford over 1955-56, and published a book the
next year (Prior 1957). By 1967, the ideas had caused significant waves in the
logic community (Copeland 2020) and Prior had written a sequel, in which he
presented a variety of logical systems and their subsequent properties (Prior
1967).

In the present chapter we will consider the basic aspects of Prior's tense
logic and some specific points, rather than attempting to cover every single
system.* Tensed statements are expressed as logical propositions combining
untensed terms, usually lowercase Roman letters, with uppercase Roman
letter operators capturing the tense. P and F indicate that something
happened at some point in the past or future (respectively) and are outlined
in Figure 2a. H and G capture events that have happened, or are going to
happen, continuously; they are presented in Figure 2b. These statements are
interpreted with reference to a privileged instant which is “now.”

This system also does not allow the expression of duration. In order to study
this, we first need to examine another critical problem in the logic of time: the
basic units of the logical system.

Though Prior (1967) discussed this idea in some depth, examining the con-
sequences of various choices, it has a longer pedigree, much like the ques-
tion of linear or branching time. As far back as Aristotle, again, the question

3 This concise system for writing propositions uses only the Roman alphabet but is
deeply expressive and has the benefit of unambiguous order of interpretation without
requiring brackets. For more on the way this writing tool shaped logic, see Dunning
(2020).

4 The interested reader is referred to @hrstrem and Hasle (2007) for extensive discussions
and many fine points.



Tense and Temporality

The operator P indicates the past and F future (relative to fixed now); let
r =‘itrains’ (either in the present, or untensed).

‘It will rain’: Fr
The following graph presents a visualisation of some values that satisfy
the above equation.

T
Past Now Future

We don't know when it will rain, only that at some point it will; we don't
know when or even if the rain will stop.

Operators can be combined to create more complicated tensed state-
ments such as ‘It looked like it was going to rain”: PFr

|
or
|
|
Past Now Future

As seen in the graph, the rain could already have started by now; equally
the start of the rain could still be in the future.

Such tensed logic statements can be combined with standard proposi-
tional operators; introducing w for wet grass, ‘The grass is wet, so it has
rained’ translates to:w = Pr

[Fig. 2a] Expressing tensed notions with indeterminate operators.

The determinate operators are H (‘has always been’) and ¢ (‘is always go-
ing to be’); with d = "itis day’, n =it is night’ we can state ‘Night has al-
ways followed day and day has always followed night: H ((d = Fn) A

(n = Fd))

T
Past Now Future

(Here, black represents n and white d).

In another example, using e = ‘planet Earth is present’, we can say ‘One
day, Earth will be irrevocably destroyed”: FG-e

I_

T
Past Now Future

Note that here the F is controlling —e, i.e. the end of the line.

[Fig. 2b] Determinate tense logic operators.

arose of whether to consider time as a dynamic continuum or a series of static
instants. It was given a particularly thorough examination in the work of John
McTaggart Ellis McTaggart,> who used this in his provocative argument for the
unreality of time (McTaggart 1908).

5 The unusual duplicity in his name is due to him being named John McTaggart Ellis at
birth, after his great uncle John McTaggart. When the latter died, he left his estate to
the Ellis family on the condition that they changed their family name to McTaggart. They
complied by adding it to the end of every family member’s name (McDaniel 2020).

261



262 Computing Cultures

System A
Axioms:

p (where p is a tautology)
Glp = q) = (Gp = Gq)
H{p = q) = (Hp = Hq)
p = HFp
p = GPp

Using these, the two ‘weaker’ operators can be defined:

Pp = =H-p
Fp = =G-p

[Fig. 3a] Prior’'s A system of tense logic.

System B

We introduce a set of instants / and a precedence relation, <. A further
operator T, taking parameters p for proposition and i for instant, gives:

T(i,p) is true when p is true at i

We can now define the temporal operators using this model (and a fur-
ther instant j):

T(i,Fp) =3j i <jAT(,p)
T(i,Pp) =3j-j<iAT(,p)
G and H can be constructed in a similar way:

T@,Gp) =Vj-i<j=T(3p)
T(,Hp) =Vj-j<i=T(p)
System A’s axioms are also all axioms of System B.

[Fig. 3b] Prior’s B system of tense logic.

McTaggart classified logical systems about time into two types: A and B. The
A-theory view of time is that presented above—it is the logic of tenses and is
operator-first, with statements made relative to a privileged “now.” Operators
are defined axiomatically (e.g. Gp = ~F ~p) and they are able to translate
temporal statements lacking measurements into a formal setting. See Figure
3a for definitions.

By contrast, B-theory systems start by defining the notion of a comparable
instant. Logical propositions are associated with instants using an operator
that lets us judge the truth of a proposition at a given instant. B-theory relies
on concepts of simultaneity, before, and after as its main notions; critically,
it does not afford privilege to any particular instant, not even “now.” The
same temporal operators can be defined as in A-theory, but are now given in
relation to the series of instants. Definitions, following Prior (1967) and @hr-
strem and Hasle (2007), are given in Figure 3b.

Operators from A-theory can be defined with relation to the time series

of B-theory, as seen in Figure 3b. @hrstrem and Hasle (2007, §3.2) detail

an argument that B-theory should be seen as the “basic” system, with the
premise that B-theory concepts cannot be expressed in A-theory since it has
no way to express the ordering of events. That the B-theory is seen as the
standard is reflected in its primacy in the Stanford Encyclopedia of Philosophy



Tense and Temporality

entry on temporal logic (Goranko and Rumberg 2022). However, Prior was
opposed to that view, in part motivated by his own realist philosophy which
privileged human-intuitive models, including (in his view) A-theory. @hrstrem
and Hasle (2007, §3.2) agree, and provide a mechanism through which A- and
B-theory concepts can be freely intertranslated.

It is notable that many modern logics were developed by people familiar with
complex mathematics (e.g., Russell, Kripke, Scott). By contrast, Prior did not
train in maths until later in life, and tense logic was developed in an almost
purely philosophical setting. This created an emphasis, at least initially, on
using tense logic for conceptual investigations, hence the strong connection
with statements in natural language. Tense logic did, however, still attract the
intellectual cachet of formalism, though its form differed: A-theory lent itself
to an axiomatic presentation and B-theory to a semantic model (ibid., §2.8).
This is how they are presented in Figure 3a and 3b.

The distinction is relevant for the application of tense logic to computing, for
which the potential utility of discrete-time B systems was recognized by Prior
(1967, 67). He wrote they “are applicable in limited fields of discourse in which
we are concerned only with what happens next in a sequence of discrete
states, e.g. in the working of a digital computer.” Despite this observation in
1967, the impact of tense logic on computing did not come until well into the
next decade. This history is traced in the next section.

4. Time, for Computers

One early glimpse of a logic of time in a computing setting came from John
McCarthy and Patrick Hayes (1969), writing a review of ideas from philosophy
that could be exploited for their artificial intelligence (Al) work at Stanford. The
authors proposed a “fluent” function which allows statements such as “given
one situation, a certain other will eventually result.” They explicitly made the
connection between this situation calculus and Prior's tense logic, presenting
intertranslation of the relevant operators. They also proposed a “formal lit-
erature,” which is “like a formal language with a history: we imagine that up to
a certain time a certain sequence of sentences have been said. The literature
then determines what sentences may be said next” (ibid., 32). As well as being
an interesting anticipation of natural language processing Al in the 2010s, this
notion has a reflection in later models of temporal logic that use sequences
of (abstract) computer states as models for history, and which determine the
future properties of the system or its allowable actions.

While this paper shows glimpses of how the ideas of tense logic could be used
in computing, it seems to have made little impact on the early development
of temporal logic in computer science. This could be because of its focus on
the Al domain, quite different to the applications for which early temporal

263



264 Computing Cultures

logic work were developed (it has a large number of citations in Al literature).
Instead, the line of work taking tense logic to concurrency goes via another
Stanford connection, the work of Zohar Manna on termination.

The task of verifying the correctness of programs is difficult and has a long
history (Jones 2003). An early proponent was Bob Floyd (1967), who drew flow-
charts of programs with logical assertions expressing properties at particular
points. Floyd then conducted semi-formal proofs using axioms about the
program behavior and input to trace through its intended execution, demon-
strating that particular conditions about the program output would be true.
In this way, Floyd, and others who followed in his style such as Hoare (1969),
argued that a program could be verified correct.®

However, should there be some error in a program or input that prevents it
terminating (for example, a loop which is supposed to count down to a target
value instead counts upward indefinitely), the program'’s correctness cannot
be shown. Since most programs in the 1960s were “functional” (i.e., intended
to produce an answer), proving termination was a desirable feature. Due

to the halting problem (Davis 1965), an algorithm to automatically deter-

mine whether an arbitrary program terminates is impossible, but for some
programs it is possible to construct a proof of termination. Floyd used his
annotations to show that every step of the program decreased some quantity
towards a limit (e.g., a loop counter decrementing to zero). The inherent future
tense in the question “Will this program terminate?” provides a hint to why this
line of work eventually involved tense logic.

We see in the work of Floyd and Hoare some early attempts to bring programs
into the domain of mathematical proofs. There is yet to be any explicit con-
nection with logic (though later Hoare's work would be termed “Hoare logic")
and neither author provides citations to literature outside the computing
field. Instead we can observe that their use of logicomathematical constructs
like propositions and predicates assumes the audience has familiarity with
these concepts already. From the framing, the authors position themselves
within the tradition of formal semantics for programming languages, one of
the earliest academic spheres of theoretical computer science (Astarte 2022).
By the late 1960s, the precedent for these approaches was well established,
though much criticized; indeed, this new strand of program verification was

in some respects an answer to the difficulties of formal semantics (ibid.). The
application of techniques explicitly influenced by logic is yet to appear, and, as
we will see, was largely reinvented.

6 Later proponents of program verification would come to talk (more precisely) about a
program “meeting its specification” and detractors argued about the applicability of
proofs made about abstract representations to the physical working of programs—but
these concerns are out of scope for the current chapter and the interested reader is
directed to MacKenzie (2001, Chapter 6).



Tense and Temporality

The thread begins properly with Floyd’s student Manna (1939-2018), who
studied mathematics at the Technion in Haifa, Israel, before embarking on a
PhD at Carnegie Mellon. His dissertation “Termination of algorithms” (Manna
1968) took Floyd's ideas further and included significantly more logical weight.
The idea was to translate an algorithm (an already abstract representation

of a program'’s functionality, not dissimilar to Floyd's flowcharts although

less pictorial) into a series of statements of first-order predicate calculus.
Through a careful manipulation of these predicates, now in the space of logic,
a particular statement could be formulated, the (logical) satisfiability of which
would indicate the termination of the original algorithm.” Through a series of
papers, Manna (1969a, 1969b) showed that the translation into logical pred-
icates could be achieved for more concrete programs. This decision to move
away from merely adding logical statements to programs (as Floyd had done)
and instead to translate wholesale into predicate calculus represented a new
way of thinking about programs in a logical way—forefronting the logic as the
space for reasoning.

Manna (1970) next became interested in non-deterministic programs—those
which, rather than being functional, have a number of equally correct possible
terminations. This work led ultimately towards his collaboration with another
Stanford postdoc, Ed Ashcroft (Ashcroft and Manna 1971), which addressed
(inherently non-deterministic) concurrent programs. However, this approach
to concurrency was ultimately discarded by Manna and did not inform his fur-
ther work; for more on this, see Jones (2023).

Instead, Manna (and Pnueli) came to favor a modal-logic based approach,
which appeared in a paper by Burstall (1974). Burstall had encountered
Manna's approach to program correctness, but found his wholesale trans-
lation into predicate calculus overly complicated for problems that Burstall felt
were relatively simple. Instead, he favored a more informal proof of program
correctness and termination achieved by “stepping through” a pen-and-paper
simulation of a program’s execution. This proof was built using predicate
assertions attached to points in the program.

The key distinction came from Burstall using two kinds of assertion attach-
ment. In the standard Floyd approach, as used by Manna, an assertion must
always be true every time the control flow reaches that point in the program.
Burstall, however, introduced another kind of assertion which stated that
execution of the program would eventually reach that point when a particular
assertion was true (ibid., 308). To illustrate the distinction, a typical Floydian
assertion within a loop whose termination criterion isi > n might state i < n;

7 Satisfiability is a property of formulae in mathematical logic: a formula is satisfiable if
there exists an value for each of its variables which results in the overall formula being
true. For example, i < o is satisfiable when i can range over the integers, but not when i is
confined to the natural numbers.

265



266 Computing Cultures

Burstall's assertion would state i > n. The distinction might seem rather trivial
at this point, and, indeed, Burstall shows that there is not much expressive
difference in his approach and Floyd's, since in functional programs one would
expect control to pass through every point in a (well-written, terminating)
program. Instead, some proofs come out easier with Floyd’s and some with
Burstall's. The real value would come later, with an application to non-
deterministic and concurrent programs, where the multiple valid outcomes
meant that control would not be guaranteed to flow through a whole program.

Burstall made the important observation in the paper’s conclusion that what
he wrote represented a simple form of modal logic. His “eventually” notion
was like the modal possibility operator and a standard Floyd-like assertion
was like the necessity operator. The possible world semantics of modal logic
establishes an interpretation for modal statements: a proposition of the form
“possibly p”is true if a world in which p is true is somehow accessible from the
actual world. Burstall’s formulation used “possible states” and their acces-
sibility was shown through the path of program execution. Clearly Burstall
was deeply familiar with logic literature since he could precisely state to which
system of Hughes and Cresswell (1968) this corresponded (S5)—however,
despite his accessibility notion connecting states of computation through
time, he did not make the connection to Prior’s tense logic. The fact that this
section comes at the conclusion, and is not used as a motivator throughout
the text, suggests that Burstall did not consider this the major contribution of
his work—perhaps seeing it instead as something of a curiosity rather than a
significant tool for the programmer to use.

Burstall's ideas got back to Manna, and provided the inspiration for a new
direction in his work, reported on in a joint paper with Richard Waldinger
(1976). Now the concept of temporality appears at last in a computer science
context, with the title reading “Is ‘'sometime’ sometimes better than ‘always'?
Intermittent assertions in proving program correctness.” Despite this there
are no references to the logic literature—the authors do not follow Bur-
stall’s lead. Instead the paper is situated firmly in the program correctness
paradigm. “Intermittent assertions,” a term coined in this paper as a way

to describe Burstall's idea, and opposed to the Floyd-style assertions that
they called “invariant,” are used to prove the correctness and termination of
programs in a single proof. This is seen as the major reason to prefer inter-
mittent assertions, though the authors do note in the conclusion that while
termination is an interesting property, many useful classes of program do not
terminate, and for those, intermittent assertions might also turn out to be
appropriate. This line of work was followed by another Israeli, Amir Pnueli.

Pnueli (1941-2009), according to his long-time collaborator David Harel (2010),
was a quiet and gentle man, generous; his habit of running late with work
did not prevent his contributions being recognized for the 1996 Turing Award



Tense and Temporality

(Zuck 2019). Pnueli had a background working on applied mathematics before
moving to Stanford as a postdoc in 1967 (ibid.). There, he worked with Manna
and knew his early ideas; their work together concerned moving problems
from computing and programming into first-order predicate logic, but there
was yet to be any sign of modal or tense logic.

By the mid-1970s, Pnueli had returned to Israel, setting up a new computer
science department at Tel Aviv University, where he became interested in non-
terminating and cyclic programs, such as operating systems and—critically—
concurrent programs (Francez and Pnueli 1978). Viewing such programs as
functional transformations of input into output worked rather poorly. Pnueli
did not wish to give up on logic, but came to believe that a dynamic approach
was needed. He expressed this in a speech in 2000, after receiving the Israel
Prize (quoted in Zuck 2019):

In mathematics, logic is static. It deals with connections among entities
that exist in the same time frame. When one designs a dynamic computer
system that has to react to ever changing conditions, ... one cannot design
the system based on a static view. It is necessary to characterize and
describe dynamic behaviours that connect entities, events, and reactions
at different time points. Temporal Logic deals therefore with a dynamic
view of the world that evolves over time.

The early work of Francez and Pnueli did not yet use the language of
temporality nor did they cite Manna and Waldinger (1976), suggesting their
work happened somewhat independently. Francez and Pnueli analyzed the
ongoing behavior of a program as its key property, and wanted to formalize
how a program reacted appropriately to stimuli. This lent itself to statements
in the form “if input x happens, then at some point the program will doy in
response.” By introducing an explicit time variable to propositions about

their computational statements, these inherently temporal statements could
be expressed. Over these discrete, time-ordered sequences of states, an
operator Ev [eventually] was used. This is a clear example of a B-theory system
of tense logic, though it was reinvented in this paper. While Pnueli and Francez
knew of Burstall's work and followed a similar strategy for their proofs, they
did not take up his suggestion for using modal logic.

One computer scientist who did present his work with a strong grounding in
logic was Fred Kroger, who was working at Technische Universitat Minchen
(TUM) in the mid 1970s. Inspired by Burstall, but unaware of Manna and Pnueli,
his program logic is likely the earliest example of tense logic in computing.
Kroger (1975) argued that since algorithms are dynamic, a logical system is
needed to cope with propositions that become true or false over time. Kréger
introduced a language for program logic that had specialized operators to

267



268 Computing Cultures

represent specific program components such as branching and looping, which
he formalized using Kripke semantics, a standard method for modal logic.

A few years later, Kroger (1978) became aware of Manna and Waldinger’s work
and showed how their approach connected to the literature of logic. Here,

he presented a complete logical system with operators nex and som. While
we have seen the latter, an F equivalent, emerge many times (and implicitly
seen G appear in the guise of Floyd-style invariant assertions), this is the first
discussion of a “next” operator in computing. Only applicable to discrete-time
systems, this operator indicates that a particular proposition should hold in
the state directly succeeding the one in which the term is evaluated. Not typ-
ically included in Prior’s tense logic, a chapter on “Non-standard Logics” in his
later book considered this operator (Prior 1967, 8 IV.3), which Prior called T (for
“tomorrow,” and its complement Y for “yesterday”) and that was due to Dana
Scott, who had some widely cited work in this area that was never published
(Copeland 2020).

In response to Kroger's presentation, Pnueli mentioned that he was working
on a similar system for concurrency and non-determinism using only the
“sometimes” and “always” modalities. In the years since his paper with
Francez, Pnueli had encountered these modal notions. While on sabbatical

at the University of Pennsylvania, Pnueli was working on problems stemming
from his partnership with Manna, according to @hrstrgm and Hasle (2007,
344) who had personal communication with Pnueli. At Penn, Saul Gorn
showed Pnueli Logic of Commands (Rescher 1966), which was not directly
useful, but provided a reference to a book by Nicholas Rescher and Alasdair
Urquhart (1971) called Temporal Logic, which did inform his work. Pnueli said
this was “late 1975 or early 1976"; given that it was not mentioned in the paper
with Francez, later seems more likely. With this material in hand, Pnueli (1977)
was able to make a proper link to the logical literature. Here, he synthesized
ideas from Burstall, Manna, and Kréger with some firm modal logic, calling the
result “temporal logic"—noting also that McCarthy and Hayes (1969) had made
some suggestions along these lines. Intermittent assertions could now be
formalized using “temporal reasoning” and applied to concurrency. In a later
publication expanding the idea Pnueli (1979) uses state sequence semantics
and includes a Kroger-style “next” operator X alongside F and G, now explicitly
invoking the connection with Prior.

Here we can see a new phase in the application of logic to computing. While
Burstall, Manna, and Pnueli (and their collaborators) had taken ideas here
and there from logic, much of their work in the 1970s created new ways of
thinking about programming largely ignorant of the related literature in logic.
By the end of the decade, the links were discovered, and a new basis for the
computing logics could be presented, as part of a distinguished lineage. In
contrast, Kréger explicitly evoked much of the logic canon in his work, but



Tense and Temporality

perhaps because of its lack of immediate connection to the program-proving
paradigm, it was somewhat overlooked—though all the same components
were present as in Pnueli’'s paper a few years later, it was Pnueli that received
the Turing Award. This will be discussed further in the current chapter’s con-
clusion, but first, let us examine the manner in which Pnueli’s temporal logic
was presented with its new logic grounding.

5. Temporal Logic Canon

By 1980, Manna held positions at both Weizmann and Stanford and Pnueli
was at Weizmann; the two built a network of researchers into temporal logic
located around Israel. Many of these can be seen as collaborators during this
time and in the acknowledgments of a series of joint works by Manna and
Pnueli (1981a, 1981b, 1982, 1983). These papers lay out a canonical form for
temporal logic, specifically positioned as a method for abstract reasoning
about, and verification of, concurrent programs.

By now, Manna and Pnueli had become versed in modal and temporal logic,
and reinterpret their previous work in this grounding—making reference to
Prior (1967) and Rescher and Urquart (1971). Indeed they build their own logical
system by presenting modal logic as a well-known natural starting point. They
provide the justification for employing modal logic as a basis for temporal
logic by explaining that it fixes one variable and allows variation over others.
While standard predicates and quantifiers allow expression of properties

of a particular program state, temporal operators indicate relationships
between states. Using modal logic is not wholly necessary for a temporal logic
system, since Pnueli had already shown that time could simply appear as a
parameter in predicate logic systems, but by making time the major variable
its importance as the factor linking states is more clearly emphasized.

The logic system uses a discrete sequence of ordered states and operators
are derived from this—in other words, a B-system. The technical details are
represented in Figure 4; note the use of pictorial operators borrowed from
modal logic rather than the uppercase letters Prior used. The system explicitly
includes an axiom (no. 39) of “forwards linearity”: there is no branching future
here.

Having built a temporal logic system that is so far entirely abstract—applicable
to any kind of tensed statement about events—Manna and Pnueli work on

the parts specific to programs. By deriving axioms from particular programs
and adding them to the overall temporal logic, expressions of properties of
those programs can be made. The proof principles and decision procedure

of the logical system can then be used in order to prove them. Various proof
strategies are presented, which build on the intermittent assertions approach
of Manna and Waldinger (1978) as well as Manna's early work on termination.

269



270 Computing Cultures

A temporal logic universe is a collection of states and an accessibility re-
lation R. A state s has precisely one accessible next state s’ defined as its
discrete time successor via the function p so p(s,s") holds. The transitive
and reflexive closure of p, R, is the accessibility relation. R(s,s") is true
when s’ is in the future of, or is identical to, s.

The model created by this universe is an infinite sequence of states:

O = S, 51,53,

and

Vi = 0,j =i p(spsie) N RGsysp)

Notably, the index updates as progress is made: s, is always the current
state, and s, the next state.

Using s(w) as the truth value of the formula w in state s, the temporal
operators are defined as follows:

So(@w) =Vi=0-s5;(w)

so(Ow) =3i =0 - s5;(w)

so(ow) =3i =2 0-5;(w)

[Fig. 4] Temporal operators defined in Manna/Pnueli style

Pnueli and Manna provide an intriguing advantage for using this latter system:
less temporal reasoning is required. The implication here is that the additional
complexity of reasoning using the logical system might be off-putting to
potential users.

The presentation of temporal logic in this series of papers, which forms

the basis of textbooks written by Kréger (1987) and later Manna and Pnueli
themselves (1992), paints a different picture to that which is outlined in the
current chapter. This temporal logic system, which was built up by a variety

of authors over a series of years and started with systems that worked

very closely with programs—and that might conceivably form part of an
advanced programmer’s workflow—is presented here firmly as a variety of
the well-established modal logic. This reframing of their work as part of a
time-honored abstract logical world mirrors the “reflective closure” of the
formalization of programming language semantics, a related field of computer
science (Astarte 2022), and is typical of the way computers were reinvented as
logic machines in the 1980s (Priestley 2011).

The four Manna/Pnueli papers discussed in this section indicate the maturing
of temporal logic into a central canon, with the duo at the center and support
from their growing research environment. The topic started to be taught, for
example by Kréger at TUM from 1983, out of which course he wrote a textbook
combining the core ideas from Manna and Pnueli with some aspects of his
own earlier logic (Kroger 1987). Work throughout the 1980s on temporal logic
continued in two veins: experimentation with the core logical system—add-
ing operators, testing expressiveness, decision procedures, and so on—this
activity often coming from the Israeli group; and applying the ideas from
temporal logic to practical tools and approaches, often externally to Manna
and Pnueli's team. Those applications are explored in the following section.



Tense and Temporality

6. Problems of the Past, Logics of the Future

With an established canon of temporal logic to examine, we can now return
to some of the old logical questions considered previously in this chapter: the
fundamental basis for a system, and the branching or linear nature of time.
As explored earlier, McTaggart identified two basic conceptions for thinking
about tensed statements, A- and B-theory, which Prior subsequently consid-
ered in some detail. Every computer science publication cited in the present
chapter uses only a B-theory basis: Why? One reason is the ostensible focus
on programming that set state sequences as the domain of discourse, thanks
to an established literature on the syntax and semantics of programming
languages being heavily state-based (see Astarte 2019, 2022). Prior himself had
noted that B-theory could be applicable to problems involving computers. It
is however curious to wonder why the canonical series of papers, which uses
the language of abstract logical systems so clearly, does not even explore an
operator-first A-system. Another potential explanation is that insignificant
linkage to practical programming was a good way to get computing theory
dismissed as irrelevant in the 1960s and 70s—even though that link was rarely
exercised (Astarte 2022). The temporal logic canon discussed above does give
example “programs” for treatment within the logical framework, but these are
all rather small, and none are actually written in a real programming language
(rather, pseudocode is used).

Leslie Lamport (1941-) was interested in providing a more practical frame-
work for this kind of logic, and, indeed, also in the question of branching time.
Lamport studied a PhD in mathematics, and, unusually for a someone who
made significant contributions to computer science theory and practice—even
winning the Turing Award in 2013—never had a permanent academic position
and spent his career in industry. Lamport became interested in concurrency
through algorithms; he saw a paper on the mutual exclusion problem in Com-
munications of the ACM and thought he could write a better solution, eventually
developing the “bakery algorithm” (Lamport 1974). In the process, he came to
believe that concurrent algorithms need reliable proofs (Hoare and Lamport
2020).

Like many others mentioned in this chapter, Lamport (1977) invented his own
temporal system, in his first publication on proving properties of concurrent
programs. It hinges on his operator AwB, which he reads as “if a legitimate
execution reaches a state in which A is true, then it will subsequently reach a
state in which B is true.” Like with many other authors, Lamport appears to
have invented this independently of the logic literature, including no citations
thereto, and though he references Manna'’s work, it is the early material with
Ashcroft that has no temporal aspects.

271



272 Computing Cultures

Consider a branching future as illustrated below; the current state (used
for interpretation) is o.

\
s < <

<

o

/\
ATARANAY

Q

AAY

,_,
he)

he)

In Lamport’s view, ‘sometime p’ is true, since every possible future path
has p true at some point. However, while ‘sometime z' is true, since one
future path has z true, ‘not always not z’, (=0- z or ©z) is not true, since
there are branches in which z is never true. In the style of Ben-Ari, Pnueli,
and Manna (1983), VFp and 3Fp are both true; 3Fz is true while VFz is
false.

[Fig. 5] Different interpretations of future tensed propositions in a branching future

By the end of the decade, Lamport (1980) had become aware of both temporal
and tense logic, providing many citations to Rescher and Urquart (1971).
Lamport’s concern was now that linear time might not always be the best
model, as reflected in the title ““Sometime’ is sometimes ‘Not never"—an
obvious reference to Manna and Waldinger (1976). He writes out a branching
time temporal logic, noting that branching and linear time are equally but not
equivalently expressive. In branching time, in which every possible future is
equally real, “sometime p” should denote that p is true at some point in every
future path. However -o- p (or ¢ p) means that it is not true that every future
path has a continual false value for p; i.e., there is at least one future path in
which p is true at some point. See Figure 5 for an illustration.

Lamport argues that branching time temporal logic is better for modeling
non-determinism, in the sense of automata theory, where a non-deterministic
machine is one that pursues all its possible courses simultaneously and ter-
minates successfully when one course succeeds.® On the other hand, con-
currency is often modeled by a system in which actions of concurrent agents
happen sequentially, but the order of which is non-deterministic. Lamport
made the case that reasoning about concurrent programs is concerned only
with the sequence of events that actually happens in the future of the pro-
gram, and so linear time temporal logic is more suitable since it constrains the
future to one path.

8 This kind of automata-theoretic approach is used in the work of Pratt (1976, 1979) and
Harel and Pratt (1978).



Tense and Temporality

Branching time was addressed by the Israeli group: Ben-Ari, Pnueli, and
Manna (1983) present some ideas in this respect. To set up branching time, the
semantic model is changed from state sequences to state trees, rather like in
Figure 5. The future is then a tree rooted in the current state; quantifiers range
over branches and temporal operators within branches. This means that there
is a distinction between the operator 3F (true at some point in the future in at
least one branch) and VF (true at some point in the future on every branch).

This allowed the expression of yet more properties, and, the authors claim,
presentation of non-deterministic programs more naturally—yet some
aspects remained inexpressible in either given system. Branching time,
generally, is less suited to discussions of fairness,® since the tree of all possible
computations includes unfair paths; yet for discussion of non-deterministic
properties, it is the only model to use.

Lamport frequently wrote about temporal logic in a rather critical tone—in
particular he felt many systems were “too expressive,” especially when they
included “next” operators (Lamport 1980). In developing a system for speci-
fying programs using temporal logic, Lamport wrote about needing, for
example, “a lot of ordinary mathematics glued together with a little bit of
temporal logic” (Lamport 1999), presumably in a backhanded reference to

the large quantities of complicated mathematics in the Israeli group’s papers.
Lamport’s system TLA (Lamport 1994), and its successor TLA+ (Lamport 1999),
was intended for practical use by software engineers for specifying con-
current systems. The idea was that a programmer could work out the core
functionality of their proposed system using a TLA model and verify some
important properties before the complexities of implementation made the
task more difficult. He emphasized a “compositional specification” approach
with the basic module unit used to built more complex specifications. The
underlying temporal logic system appears simple and uses o as its only
operator, though assertions are allowed over pairs of states, which he calls
“actions” and that implicitly incorporate a notion of “next.” While these actions
are inherently temporal, the reasoning about them can be non-temporal,
simplifying the process. Following his earlier remarks about its suitability

for concurrent systems, TLA uses linear time logic. TLA+ did indeed end up
seeing some success in industrial use, notably by Amazon Web Services (Cook
2018; Newcombe et al. 2015), though both utilized additional tools to check the
specifications—specifically, the model checker TLC (Yu, Manolios, and Lamport
1999).

The model-checking paradigm also has its roots in temporal logic, though
it has grown to be a significant tool of the verification community. While

9 This key property of concurrent systems, which essentially states that no concurrent
agent that is able to act should be prevented indefinitely from doing so, is treated by
another collection of Israeli researchers (Gabbay et al. 1980).

273



274 Computing Cultures

Lamport downplayed the mathematics and temporality in TLA, Clarke and
Emerson (1981) were not afraid to dive into the technicalities of branching

time logic. According to Emerson (2010), he had been trying to work with
concurrency in a Hoare logic framework and found the manual proof con-
structions difficult and time-consuming. Emerson heard Manna give a talk

on fixed points at the University of Texas in 1975, and this led to a team at
Texas trying to apply this to parallel programs; the results were presented by
Emerson and Clarke (1980). Working in this setting, the duo realized their “fixed
point” semantics corresponded to the branching temporal logic of Ben-Ari,
Pnueli, and Manna (1983). They felt this branching logic struck a nice balance
between expressiveness and decidability, though the complexity of many con-
current programs still caused difficulties. Clarke and Emerson (1981) therefore
used a “synchronization skeleton”: the program’s concurrency management
aspects with all the sequential parts hidden.

The model-checking approach starts with a specification written in the CTL
language. From this, a synchronization skeleton can be automatically syn-
thesized and will have a finite number of states as a consequence, making it
amenable to mechanized checking. Their branching time logic is used since
the ability to quantify over paths of computation, not available in linear
time logics, is useful in program synthesis. Properties can be proven about
the skeleton and once the synchronization is proven correct the rest of the
program can be written. The program synthesis is based on the decision
procedure for the satisfiability of CTL; Clarke and Emerson (1981) note that
although the procedure is potentially exponential, the skeletons tend to be
quite small.

This work on the branching time logic CTL, and the surrounding development
and verification ideas, led to the Turing Award being granted to Emerson and
Clarke in 2007, alongside Joseph Sifakis, who developed essentially the same
idea independently (Emerson 2008). The paradigm is called “model checking”
since their algorithm checks whether the synchronization skeleton is a proper
model of the properties desired for the program. Since the 1980s, there have
been many developments in the area, seeing particular success in applications
to hardware verification, an area where problems tend to be smaller in size
and more regular (Emerson 2010). As well as the Amazon examples discussed
above, other industrial uses were presented by Emerson and Namjoshi
(1998), who also somewhat poetically claimed that model checking addressed
Gottfried Wilhelm Leibniz's dreams of universal calculus.

Like TLA+, model checking in the early 2000s represented a more prosaic
dream: the long-awaited industrial applicability of theoretical computer
science and the formal methods community. Emerson (2008) reports Daniel
Jackson claiming model checking “saved the reputation” of formal methods,
and, grudgingly, Edsger Dijkstra admitted it was an “acceptable crutch.”



Tense and Temporality

From its early recreations in the 1970s, and ancient roots in philosophy and
theology, the logic of time has, at least, found a place in the 21st century.

7. Conclusions

Though the origins of the logic of time have ancient and philosophical roots,
concerns about effective ways to express temporal concepts continue to
resonate even when placed into an entirely different context, that of digital
computers. Whether attempting to investigate the tensed nature of human
language, or to state critical properties of concurrent programs, the precision
of a logic of time provides a useful tool. The ability to state difficult tensed
notions formally yet intuitively was as essential for Prior trying to represent
the human experience as for Lamport attracting software engineers to a
specific paradigm. It is perhaps less surprising that philosophy should prove
relevant to concurrent programming when we recognize the world as a giant
concurrent system, full of independent agents behaving unpredictably.

In the computing context the question of time’s structure as linear or
branching changes from a theological conundrum pitting omniscience against
free will to one of the relative merits of non-determinism or fairness in con-
currency. This choice presents real technical challenges over which statements
can be phrased in a logic system and the significant difficulties of combining
them. Choosing a structure for the future affects what can be proven to be
true: the way the world is viewed, is, in a sense, changing its very nature.
Despite this, the two practical systems for temporal logic discussed here,
model checking and TLA, effectively manage this choice and the TLC system
even uses aspects of both.

By contrast, the debate over A- and B-theory as the fundamental basis for a
logic of time is almost entirely ignored within computing. It is simply taken

as automatic that a B-system based on state sequences is the appropriate
choice, likely an extension of existing views on the semantics of programming
languages and proofs of programs. Perhaps this also stems from the lack of
engagement by the early computer science work with the long history of time
in logic. Unlike Peirce, tukasiewicz, and Prior, all of whom studied and used
historical logic, temporality took a circuitous route into computing.

Though Prior had already identified the potential application of tense logic to
computers in 1967, and McCarthy and Hayes noted some connections, most
computer scientists did not engage with the logic literature until the early
1980s. Instead, similar ideas were slowly reinvented and later rationalized
when the connections were realized. It is interesting to observe that the
exception to this rule is Kréger, whose work connected to the logic literature
immediately; despite—or perhaps even because of—this, his work did not

275



276 Computing Cultures

cause a great deal of impact and he is often overlooked in the internal history
of the field.

Once a temporal logic system research agenda was established, largely
around Manna and Pnueli, experimentation with the system formed the domi-
nant trend of the 1980s. The establishment of the agenda can be seen in the
way that many new introductions began with student projects and were then
incorporated into the canon via joint papers with Manna and/or Pnueli—e.g.,
branching time with Ben-Ari (1983).

Penetration of these ideas into practical applications took a long time, and it is
worth observing that the two discussed here took different routes: simplicity
in TLA to encourage programmers to specify with it; and complexity backed up
with tool support for model checking. It is interesting to observe that Manna
and Pnueli, as well as Lamport, find the complexity of temporal reasoning
sufficiently off-putting as to sell ways to avoid it as positives in some of their
systems. Further, both practical temporal systems mentioned here, TLA and
CTL, use a simplified program structure for temporal reasoning to cut down
on the complexity and enhance the usability of their systems.

The standard narrative in computer science that computers grew from the
application of logic theory is lacking in nuance, as Priestley (2011) notes; rather,
much of theoretical computer science stems from programmers inventing
“new” tools and discovering only later they can be legitimized and codified by
connecting them with mathematical or logical practice. The choice of symbols
for temporal operators reflects this: starting with program-like keywords
such as “eventually” or “sometime,” Prior’s single capital letters—though not
his taste for full Polish notation—were briefly in vogue until the connections
were made with modal logic, and those symbols taken over, representing the
assumption of a legitimate logical appearance. The temporal logic research
program in the 1970s and 8os is part of the re-examination of computing
objects (physical and abstract) in the rediscovery of logic, a rationalizing of
existing practice for concurrent programming, as had happened for formal
semantics in the 1960s (Astarte 2022). The assumption of this intellectual
pedigree may be part of the reason why temporal logic is a particularly pres-
tigious field of computer science—this chapter features four Turing Award
winners. Temporal logic, then, is an example not of a new branch of logic or
even a practice with direct applicability to programming, but a combined
object between the two, the re-situation of old and ancient ideas in a new
context.

The research leading to this chapter received funding from Leverhulme Trust Grant No.
RPG-2019-020. Many thanks to attendees at ICHST 2021, Arianna Borrelli, Marie-José Durand-
Richard, Cliff Jones, Mark Priestley, and Markus Roggenbach for providing useful comments
and suggestions.



Tense and Temporality

For the purpose of Open Access, the author has applied a CC BY licence to any Author Accepted
Manuscript (AAM) version arising from this submission.

References

Ashcroft, Ed A., and Zohar Manna. 1971. “Formalization of Properties of Parallel Programs.” In
Machine Intelligence 6, edited by B. Meltzer and D. Michie, 17-41. Edinburgh: Edinburgh Uni-
versity Press.

Astarte, Troy Kaighin. 2019. “Formalising Meaning: A History of Programming Language
Semantics.” PhD thesis, Newcastle University, Newcastle, UK.

. 2022. “Difficult Things Are Difficult to Describe’: The Role of Formal Semantics in

European Computer Science, 1960-1980." In Abstractions and Embodiments: New Histories of

Computing and Society, edited by Janet Abbate and Stephanie Dick, 126-45. Baltimore: Johns

Hopkins University Press.

.2023. “From Monitors to Monitors: An Early History of Concurrency Primitives.” Minds
and Machines 34: 51-71. https://doi.org/10.1007/511023-023-09632-2.

Ben-Ari, Mordechai, Amir Pnueli, and Zohar Manna. 1983. “The Temporal Logic of Branching
Time."” Acta Informatica 20, no. 3: 207-26.

Burstall, Ron M. 1974. “Program Proving as Hand Simulation with a Little Induction.” In Infor-
mation Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10,
1974, edited by J. L. Rosenfeld, 308-12. Amsterdam: North-Holland.

Clarke, Edmund M., and E. Allen Emerson. 1981. “Design and Synthesis of Synchronization
Skeletons Using Branching Time Temporal Logic.” In Workshop on Logic of Programs, edited by
D. Kozen, 131: 52-71. Berlin: Springer-Verlag.

Cook, Byron. 2018. “Formal Reasoning About the Security of Amazon Web Services.” In Computer
Aided Verification: CAV 2018, edited by G. Weissenbacher and H. Chockler, 10981, 38-47. Cham:
Springer.

Copeland, B. Jack. 2020. “Arthur Prior.” In The Stanford Encyclopedia of Philosophy (Spring 2020
Edition), edited by Edward N. Zalta. Stanford University. Accessed November 2024. https://
plato.stanford.edu/archives/spr202o/entries/prior.

Davis, Martin. 1965. Computability and Undecidability. Mineola: Dover.

Dunning, David E. 2020. “Writing the Rules of Reason: Notations in Mathematical Logic,
1847-1937." PhD thesis, Princeton University, Princeton, NJ.

Durand-Richard, Marie-José. 2023. “Boole’s Symbolized Laws of Thought Facing Empiricism.”

In Logic in Question: Talks from the Annual Sorbonne Logic Workshop (2011-2019), 97-118. Cham:
Springer.

Emerson, E. Allen. 2008. “The Beginning of Model Checking: A Personal Perspective.” In 25 Years
of Model Checking, 27-45. Cham: Springer.

.2010. “Meanings of Model Checking.” In Concurrency, Compositionality, and Correctness:
Essays in Honor of Willem-Paul de Roever, edited by Dennis Dams, Ulrich Hannemann, and
Martin Steffen, 237-49. Berlin: Springer.

Emerson, E. Allen, and Edmund M. Clarke. 1980. “Characterizing Correctness Properties of
Parallel Programs Using Fixpoints.” In International Colloquium on Automata, Languages, and
Programming, 169-81. Berlin: Springer.

Emerson, E. Allen, and Kedar S. Namjoshi. 1998. “Verification of a Parameterized Bus Arbitration
Protocol.” In International Conference on Computer Aided Verification, 452-63. Berlin: Springer.

Floyd, Robert W. 1967. “Assigning Meanings to Programs.” In Mathematical Aspects of Computer
Science. Volume 19: Proceedings of Symposia in Applied Mathematics, edited by Jacob T.
Schwartz: 19-32.. Providence: American Mathematical Society.

Francez, N., and A. Pnueli. 1978. “A Proof Method for Cyclic Programs.” Acta Informatica 9:
133-57. https://doi.org/https://doi.org/10.1007/BF00289074.

277


https://doi.org/https://doi.org/10.1007/BF00289074

278 Computing Cultures

Gabbay, Dov, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. 1980. “On the Temporal Analysis
of Fairness.” In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 163-73. New York: Association for Computing Machinery.

Goldblatt, Robert. 2006. “Mathematical Modal Logic: A View of Its Evolution.” In Handbook of the
History of Logic 7: Logic and the Modalities in the Twentieth Century, edited by Dov M. Gabbay
and John Woods, 1-98. Amsterdam: Elsevier.

Goranko, Valentin, and Antje Rumberg. 2022. “Temporal Logic.” In The Stanford Encyclopedia of
Philosophy (Summer 2022 Edition), edited by Edward N. Zalta. Stanford University. Accessed
November 2024. https://plato.stanford.edu/archives/sum2o22/entries/logic-temporal.

Harel, David. 2010. “Amir Pnueli. A Gentle Giant: Lord of the ¢'s and the {'S.” Formal Aspects of
Computing 22, no. 6: 663-65.

Harel, David, and Vaughan R. Pratt. 1978. “Nondeterminism in Logics of Programs.” In Pro-
ceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
203-13. New York: Association for Computing Machinery.

Hoare, Charles Antony Richard. 1969. “An Axiomatic Basis for Computer Programming.” Com-
munications of the ACM 12, no. 10: 576-80.

Hoare, Charles Antony Richard, and Leslie Lamport. 2020. “Virtual HLF 2020 - Dialogue: Sir C.
Antony R. Hoare/Leslie Lamport.” Heidelberg Laureate Forum YouTube Channel. Accessed
November 2024. https://www.youtube.com/watch?v=wQbFkAKThGKk.

Hughes, George E., and Maxwell J. Cresswell. 1968. An Introduction to Modal Logic. London:
Methuen.

Jakobsen, David. 2020. “A.N. Prior and ‘the Nature of Logic'.” History and Philosophy of Logic 41,
no. 1: 71-81. https://doi.org/10.1080/01445340.2019.1605479.

Jones, Cliff B. 2003. “The Early Search for Tractable Ways of Reasoning About Pro-
grams.” I[EEE Annals of the History of Computing 25, no. 2: 26-49. https://doi.org/10.1109/
MAHC.2003.1203057.

.2023. “Three Early Formal Approaches to the Verification of Concurrent Programs.” Minds

and Machines 34: 73-92. https://doi.org/10.1007/511023-023-09621-5.

Kroger, Fred. 1975. “Formalization of Algorithmic Reasoning.” In International Symposium on
Mathematical Foundations of Computer Science, 287-93. Berlin: Springer.
.1978. “A Uniform Logical Basis for the Description, Specification and Verification of

Programs.” In Proceedings, IFIP Working Conference on Formal Description of Programming
Concepts, St. Andrews, NB, Canada, August 1-5, 1977, edited by Erich J. Neuhold, 441-57.
Amsterdam: North-Holland.

.1987. Temporal Logic of Programs. EATCS Monographs on Theoretical Computer Science.
Berlin: Springer.

Lamport, Leslie. 1974. “A New Solution of Dijkstra’s Concurrent Programming Problem.” Com-
munications of the ACM 17, no. 8: 453-55. https://doi.org/10.1145/361082.361093.

.1977. “Proving the Correctness of Mutiprocess Programs.” I[EEE Transactions on Software

Engineering 3, no. 2: 125-43. https://doi.org/10.1109/TSE.1977.229904.

.1980. “Sometime’ is Sometimes ‘Not never’: On the Temporal Logic of Programs.”

In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, 174-85. New York: Association for Computing Machinery. https://doi.

0rg/10.1145/567446.567463.

.1994. “The Temporal Logic of Actions.” ACM Transactions on Programming Languages and

Systems 16, no. 3: 872-923. https://doi.org/10.1145/177492.177726.

.1999. “Specifying Concurrent Systems with TLA+." In Calculational System Design, edited
by Manfred Broy and Ralf Steinbriiggen, 183-247. Amsterdam: |0S Press.

MacKenzie, Donald. 2001. Mechanizing Proof: Computing, Risk, and Trust. Cambridge, MA: MIT
Press.

Manna, Zohar. 1968. “Termination of Algorithms.” PhD thesis, Carnegie-Mellon Univer-
sity. ProQuest. Accessed November 2024. https://www.proquest.com/openview/
da62febaf87453c725708beecgbbc789/1?pg-origsite=gscholar&cbl=18750&diss=y.



https://doi.org/10.1080/01445340.2019.1605479
https://doi.org/10.1109/MAHC.2003.1203057
https://doi.org/10.1109/MAHC.2003.1203057
https://doi.org/10.1007/s11023-023-09621-5
https://doi.org/10.1145/361082.361093
https://doi.org/https://doi.org/10.1109/TSE.1977.229904
https://doi.org/https://doi.org/10.1145/567446.567463
https://doi.org/https://doi.org/10.1145/567446.567463
https://doi.org/https://doi.org/10.1145/177492.177726

Tense and Temporality

.1969a. "Properties of Programs and the First-Order Predicate Calculus.” Journal of the

ACM 16, no. 2: 244-55. https://doi.org/10.1145/321510.321516.

.1969b. “The Correctness of Programs.” Journal of Computer and System Sciences 3, no. 2:

119-27. https://doi.org/10.1016/50022-0000(69)80009-7.

.1970. “The Correctness of Nondeterministic Programs.” Artificial Intelligence 1, nos 1-2:
1-26. https://doi.org/10.1016/0004-3702(70)90002-0.

Manna, Zohar, and Amir Pnueli. 1981a. “Verification of Concurrent Programs: The Temporal
Framework.” In The Correctness Problem in Computer Science, edited by R. S. Boyer and J. S.

Moore, 215-73. New York: Academic Press.

.1981b. “Verification of Concurrent Programs: Temporal Proof Principles.” In Logic of Pro-

grams, Workshop, edited by Dexter Kozen, 131:200-252. Lecture Notes in Computer Science.

Berlin: Springer.

.1982. “Verification of Concurrent Programs: Proving Eventualities by Well-Founded

Ranking.” Technical report STAN-CS-82-915. Stanford University Computer Science Depart-

ment. Accessed November 2024. http://i.stanford.edu/pub/cstr/reports/cs/tr/82/915/CS-TR-

82-915.pdf.

.1983. “Verification of Concurrent Programs: A Temporal Proof System.” STAN-CS-83-967.

Department of Computer Science, Stanford University. ACM Digital Library. Accessed

November 2024. https://dl.acm.org/doi/book/10.5555/892296.

.1992. Temporal Logic of Reactive and Concurrent Systems. Berlin: Springer.

Manna, Zohar, and Richard Waldinger. 1976. “Is ‘Sometime’ Sometimes Better Than ‘Always'?:
Intermittent Assertions in Proving Program Correctness.” Memo AIM-281, STAN-CS-76-558.
Stanford Artificial Intelligence Laboratory.

.1978. “Is 'Sometime’ Sometimes Better Than ‘Always'?: Intermittent Assertions in Proving
Program Correctness.” Communications of the ACM 21, no. 2: 159-72. https://doi.org/https://
doi.org/10.1145/359340.359353.

McCarthy, John, and Patrick J. Hayes. 1969. “Some Philosophical Problems from the Standpoint
of Artificial Intelligence.” In Machine Intelligence 4, 463-502. Edinburgh: Edinburgh University
Press.

McDaniel, Kris. 2020. “John M. E. McTaggart.” In The Stanford Encyclopedia of Philosophy (Summer
2020 Edition), edited by Edward N. Zalta. Stanford University. Accessed November 2024.
https://plato.stanford.edu/archives/sum2o2o/entries/mctaggart.

McTaggart, J. Ellis. 1908. “The Unreality of Time.” Mind 17, no. 68: 457-74.

Newcombe, Chris, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael
Deardeuff. 2015. “How Amazon Web Services Uses Formal Methods.” Communications of the
ACM 58, no. 4: 66-73. https://doi.org/10.1145/2699417.

@hrstrem, Peter. 1983. “Richard Lavenham on Future Contingents.” Cahiers de I'Institut du
Moyen-Age Grec et Latin 44:180-86.

@hrstrem, Peter, and Per Hasle. 2007. Temporal Logic: From Ancient Ideas to Artificial Intelligence.
Berlin: Springer.

.2020. “Future Contingents.” In The Stanford Encyclopedia of Philosophy (Summer 2020
Edition), edited by Edward N. Zalta. Stanford University. Accessed November 2024. https://
plato.stanford.edu/archives/sumz2o02o/entries/future-contingents.

Pnueli, Amir. 1977. “The Temporal Logic of Programs.” In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, 46-57.Providence: IEEE Computer Society.

.1979. “The Temporal Semantics of Concurrent Programs.” In Semantics of Concurrent Com-
putation: Proceedings of the International Symposium, Evian, France, July 2-4, 1979, edited by G.
Kahn:1-20. Lecture Notes in Computer Science, Volume 70. Berlin: Springer-Verlag.

Pratt, Vaughan R. 1976. “Semantical Consideration on Floyd-Hoare Logic.” In SFCS 76: Pro-

ceedings of the 17th Annual Symposium on Foundations of Computer Science, 109-21.
Washington, DC; IEEE Computer Society.

.1979. “Process Logic: Preliminary Report.” In Proceedings of the 6th ACM SIGACT-SIG-
PLAN Symposium on Principles of Programming Languages, 93-100. New York: Association for
Computing Machinery.

279


https://doi.org/https://doi.org/10.1145/321510.321516
https://doi.org/https://doi.org/10.1016/S0022-0000(69)80009-7
https://doi.org/https://doi.org/10.1016/0004-3702(70)90002-0
https://doi.org/10.1145/2699417
https://doi.org/10.1109/SFCS.1977.32

280 Computing Cultures

Priestley, Mark. 2011. A Science of Operations: Machines, Logic and the Invention of Programming.
London: Springer.

Prior, Arthur N. 1957. Time and Modality: Being the John Locke Lectures for 1955-6 Delivered in the
University of Oxford. Oxford: Oxford University Press.

.1967. Past, Present and Future. Oxford: Oxford University Press.

Rescher, Nicholas. 1966. The Logic of Commands. New York: Dover.

Rescher, Nicholas and Alasdair Urquhart. 1971. Temporal Logic. New York: Springer.

Simons, Peter. 2021. “Jan tukasiewicz.” In The Stanford Encyclopedia of Philosophy (Winter 2021
Edition), edited by Edward N. Zalta. Stanford University. Accessed November 2024. https://
plato.stanford.edu/archives/winzo21/entries/lukasiewicz.

Yu, Yuan, Panagiotis Manolios, and Leslie Lamport. 1999. “Model Checking TLA+ Specifications.”

In Advanced Research Working Conference on Correct Hardware Design and Verification Methods,
54-66. London: Springer.

Zuck, Lenore. 2019. “Amir Pnueli—A.M. Turing Award Laureate.” Association for Computing
Machinery. Accessed November 2024. https://amturing.acm.org/award_winners/
pnueli_4725172.cfm.


https://amturing.acm.org/award_winners/pnueli_4725172.cfm
https://amturing.acm.org/award_winners/pnueli_4725172.cfm

