l‘)

Check for
updates

Challenges for Formal Semantic
Description: Responses from the Main
Approaches

Cliff B. Jones®™)® and Troy K. Astarte

School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
cliff. jones@ncl.ac.uk

Abstract. Although there are thousands of programming languages,
most of them share common features. This paper reviews some key
underlying language concepts and the challenges they present to the task
of formally describing language semantics. The responses to these chal-
lenges in operational, axiomatic and denotational approaches to seman-
tic description are reviewed. There are interesting overlaps between these
responses; similarities are exposed even where accidental notational con-
ventions disguise them so that essential differences can be pinpointed.
Depending on the objectives of writing a formal semantic description of
a language, one or other approach might be considered the best choice.
An argument is made for increasing the use of formal semantics in lan-
guage design and here it is suggested that the operational approach is
the most viable for a complete language description.

1 Introduction

There are a number of different approaches to recording formal descriptions of
the semantics of programming languages, but most can be placed into one of
three styles: operational, denotational, or axiomatic. Any approach to describ-
ing semantics formally must find ways to tackle a set of challenges derived from
common features in programming languages, such as nested blocks or concur-
rency. In this paper, an initially simple illustrative language is described using all
three approaches and remarks are made about how they address the particular
challenges. It is interesting to note the degrees of similarity present given the
apparent conceptual differences between approaches.

The paper begins by setting out some reasons for considering semantics and
introducing the kernel of the example language. Simple applicative languages are
considered first and some conclusions are drawn that are relevant to imperative
languages. Throughout the paper, new features for the example language are
considered and the formal semantic descriptions of these features are discussed.
Finally, a concurrent, object-oriented language is introduced as a vehicle to illus-
trate the combination of all the features covered; an operational semantics for
such a language is outlined.

© Springer Nature Switzerland AG 2018
J. P. Bowen et al. (Eds.): SETSS 2017, LNCS 11174, pp. 176-217, 2018.
https://doi.org/10.1007/978-3-030-02928-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02928-9_6&domain=pdf
http://orcid.org/0000-0002-0038-6623
http://orcid.org/0000-0002-5582-4096
https://doi.org/10.1007/978-3-030-02928-9_6

Challenges for Formal Semantic Description 177

This is not primarily intended to be a historical paper; readers interested in
such a view of formal semantics could read [AJ18] which examines four early
semantic descriptions of ALGOL 60 and draws some conclusions. A more com-
plete treatment of the history of programming language semantics is presented
in Astarte’s PhD thesis [Ast19]. Nor is the objective here to provide a tutorial
on semantic description formalisms; the reader is assumed to have some previous
contact with the subject. The aim here is to look beyond the trivial language
features that are easily handled by any formal approach.

1.1 Why Describe Semantics Formally

It is worth beginning by reviewing the reasons for describing the semantics of
programming languages. Unlike natural languages, programming languages are
formal objects which means they follow a fixed (and relatively small) set of rules
that govern their structure and behaviour.

It is essential that the different users of a language, from programmers
through standard writers to compiler creators, all share a precise understand-
ing of these rules.! Natural language can be (and is) used for this purpose, but
words are always ambiguous and can all too easily lead to contradictions or omis-
sions. Therefore, formality is frequently utilised—and even in natural language
descriptions, the careful wording required ultimately results in formality of app-
roach regardless of notation [Tur09]. Another advantage to the use of formalism
is that it can help ensure completeness: if there is a form to be followed for every
language construct, the chances of accidentally omitting part of a language is
significantly lowered.

This is not to suggest that a formal description always defines one unique
result for a program in a language: it is often necessary to leave certain parts
of the description undefined in order to allow for implementation specifics and
non-determinism at run time. Carefully delineating these areas of non-definition
is, however, essential.

In addition to being formal, a useful programming language semantics must
also be tractable—it must enable proofs to be made about the language itself,
about the correctness of implementations of the language and about programs
written in the language [Bur66]. Ideally, a good semantics allows the proof of
deep properties, some of which are relied upon in compiler optimisation. Different
approaches to semantics tend to make different properties easier to prove than
others [Gor75].

Arguably an even more important use of formal semantics is in the design of
programming languages: there exist thousands of programming languages, most
of which are sadly lamentable;? even the best often exhibit feature interaction

! See, for example, the work of the IBM Laboratory Vienna on producing formal
definitions of PL/I for use in compiler writing, such as [BBH+74,Jon76].

2 In the paper ‘Hints of Programming Language Design’, Tony Hoare had the following
to say in conclusion: “This paper has given many practical hints on how not to
design a programming language. It has even suggested that many recent languages
have followed these hints” [HoaT73].

178 C. B. Jones and T. K. Astarte

where features that are useful and straightforward when taken separately lead
to incomprehensible behaviour when combined. The use of a formal semantics
during the creation of a language—ideally, before even any syntax is created—
can contribute greatly to the simplicity and clarity of the resultant language.
Unfortunately, formal semantics has typically been applied post facto to extant
languages.® Arguments for the use of semantics in the design of languages are
given in Sect. 7.

The choice of semantic description approach is often motivated by the
intended use of the semantics. Received wisdom generally holds that opera-
tional semantics is most useful to compiler writers, denotational to the language
designer and axiomatic semantics in program verification. However, some writers
have pointed out that the distinction is not always as clear cut as this [Ame89].

Of course, the challenge of describing the semantics of a modern programming
language is far greater than for, say, first-order predicate calculus. Researchers
have learnt what they can from previous work by logicians and carried these
lessons forward: the extensions involved are challenging and interesting.

1.2 Main Approaches

The main focus in this paper is on operational, axiomatic and denotational
semantics; Sect. 2 illustrates the differences in these approaches on a core lan-
guage but it is worth briefly characterising the approaches here.

An operational semantics describes the meaning of a language in terms of
an abstract interpreter that takes a program and a starting state and computes
allowed final states. Typically, the interpreter will be defined in terms of sub-
functions for each construct in the language. Ideally, the states of the interpreter
should be chosen to eschew unnecessary details.

The essence of a denotational semantics is to map a language into some
space of mathematically tractable objects. For simple programming languages
these objects are mathematical functions from states to states. Denotational
descriptions present a series of mappings from program constructs into these
functions. A key feature is the notion that the mapping should be homomor-
phic: the function denoted by a program segment should be composed from the
denotations of its components.

The previous two approaches both make the notion of state explicit and can
thus be categorised as model-based. In contrast, property-oriented descriptions
attempt to fix semantics without an explicit state.* An axiomatic semantics
contains axioms and rules of inference that define a set of judgements. In Floyd-
Hoare semantics of procedural languages, the judgements are triples in which

3 Encouraging exceptions include the Turing programming language [HMRC87], Stan-
dard ML [HMT87], and SPARK-Ada [CG90]. Furthermore, formal semantics played
an important role in the development of full Ada [BO80]. Formal description was
also utilised in the standards for Modula-2 [Wo093] and PL/I [ANST76].

4 Algebraic semantics can also be viewed as property-oriented and is briefly discussed
in Sect. 7.1.

Challenges for Formal Semantic Description 179

the middle component is a text in the language being described; the first and
third components are predicates. The interpretation of such a triple is that if
the first predicate (the pre condition) is satisfied and the text is executed to
termination, then after execution the post condition will be true.

Here the notion of state is only implicit in the meta-variables used within the
assertions. Axiomatic semantics is particularly concerned with proving properties
of programs and, if an axiomatic specification of a language allows the proving
of any true property (and no false property) of a program construct, then the
construct is considered fully specified [Pag81]. If every part of the language
is specified in this way, then the specification constitutes a semantics of the
language. In practice, it turns out to be difficult to fully specify large-scale
programming languages purely by axioms.

1.3 Applicative Languages

The majority of this paper is concerned with imperative programming languages
(as characterised in Sect.2). There are, however, some interesting semantic
description techniques that can be carried over from handling applicative lan-
guages. Two common challenges are that the languages whose semantics are to
be given have an unbounded number of admissible texts and that comprehensi-
bility of the semantic description is a major objective.

One class of applicative programming language is functional programming
languages and these — at least if they are purely functional — avoid some of the
challenges that have to be faced with the semantics of languages that feature
assignment-like constructs. Assignments require some model of storage, usually
considered as an abstract meta-notion state; avoiding assignment allows pro-
grams in functional languages to be reasoned about as though they are conven-
tional recursive functions. There might, of course, be a performance penalty in
using purely functional languages, but that discussion is beyond the scope of the
present paper.

It is important to remember that all programming languages provide a reper-
toire of basic operators and, crucially, put in the hands of programmers ways to
express functions that extend this repertoire. Thus a programmer might write
a program that computes factorial using only basic arithmetic operators; more
ambitiously, a program for inverting matrices can be written in a language that
has no such operator.

A first-order predicate language is a simple and traditional applicative lan-
guage and discussing how its semantics can be recorded facilitates deriving mes-
sages that are taken forward to the subsequent sections of this paper. Starting
with purely propositional expressions, a semantic function could be written that
recurses through the structure of the expressions,” building up the meaning of
the expression as a whole by combining the meaning of its parts. Ultimately,
this function must rely on an association of the propositional identifiers with

5 This task would be made easier with the use of an abstract syntax, a concept dis-
cussed later in this paper.

180 C. B. Jones and T. K. Astarte

truth values. As with predicate calculus, there must be a way to determine the
meaning of any predicates or functions. It is important to observe that these
two sorts of associations remain fixed and can be stored in some form of static
environment.

There are, of course, other ways of tackling the semantics of logical languages.
In an equivalence-based strategy, some operators can be defined in terms of
others (e.g. p = ¢ can be defined as —p V ¢). No matter the strategy used,
there must still be a minimum set of basic operators (e.g. the Sheffer stroke).

Classical axiomatisations (such as that in [Men64, Sect.1.4]) are unintuitive
but natural deduction rules like those presented in [Pra65] provide both a seman-
tics and some intuition as to how to reason about expressions in logical languages.

The responses to be carried forward to the review of semantic description
techniques for imperative languages are then:

— Environments—what information is stored about identifiers; in what form;
and how distinction is made between different denotations e.g. identifier-value
and function-definition pairs.

— Fundamental bases of meaning—saying one has, for example, a Boolean Alge-
bra doesn’t fix (all of) the semantics because multiple models of such algebras
exist.

— Understandability of description—as with deduction systems, semantic
descriptions should be evaluated for intuition and usability for reasoning.

1.4 A Core Imperative Language

A basic challenge to be faced, even before addressing the semantics of a language,
is to delimit the admissible utterances of the language. Although normally pre-
sented in two dimensional layout, it is still common to think of programs as
strings of characters. Some version of Backus-Naur Form notation is adequate
to define the set of (context-free) strings of most programming languages: this
is known as concrete syntaz. However, following Christopher Strachey’s advice
to “know what you need to say before deciding how to write it down”, semantic
descriptions can be based instead on an abstract syntax. This approach follows
John McCarthy’s proposal [McC63] although VDM notation is employed below.5
The advantages of using an abstract syntax over concrete may be less apparent
for a small language like the one considered here but for large languages, espe-
cially those with multiple syntactic forms of the same semantic construct, the
benefits become more apparent. Use of abstract syntax shows concern with the
structure of the language (rather than its form). The higher level of abstraction
meshes nicely with more abstract semantic approaches; however, following tra-
dition, examples of axiomatic semantics below are built around concrete syntax.

5 The use of VDM notation should present the reader with no difficulty: it has been
widely used for decades and is the subject of an ISO standard; one useful reference
is [Jon90].

Challenges for Formal Semantic Description 181

Figure 1 contains the abstract syntax of the simple core of the language dis-
cussed in this paper. Later sections in the paper add to this core to illustrate
more complex language concepts and the challenges inherent in modelling these
features.

Program :: types : Id — ScalarType
body : Stmt

ScalarType = INT | BooL
Stmt = Assign | If | While | Compound | - -

Assign :: lhs : 1d

rhs : Expr
If :: test : Expr
then : Stmt
else : Stmt

While :: test : Fxpr
body : Stmt

Compound :: Stmt*

Fig. 1. Abstract syntax of a core language

Even before getting to the semantic approaches per se, it is worth noting
that there are differences as to how context-dependent checks (e.g. required con-
sistency between uses and declarations of names) are recorded. These can be
handled within semantics (i.e. dynamically), but it is normally more fruitful to
handle these issues statically. Such static checks are called context conditions
after van Wijngaarden et al. in the ALGOL 68 Report [vWMPKG69]. Various
methods for defining these kinds of checks have been developed by van Wijngaar-
den (two-level grammars), Knuth (attribute grammars [Knu68]), and researchers
at the IBM Hursley Laboratory (dynamic syntax [HJ73]); a more thorough study
would include [GP99] or [Pie02] on type theory. Full exploration of this topic is
beyond the scope of the current paper.

Context conditions in the VDM style are generally written as predicates that
determine whether an object of the abstract syntax is well-formed with respect to
some type information. For the language whose abstract syntax is given in Fig. 1,
these predicates would have the signature wf-Construct : Construct x TypeMap
— B and use an abstract TypeMap object of the type Id — ScalarType (a finite,
constructed, function) that maps identifiers to their types.” In this simple case,
the TypeMap is a direct copy of that in the Program. These functions generally
check that the types assigned to variables match the variable declaration and

" The use of the type name ScalarType prepares the way for modelling compound
types such as arrays below.

182 C. B. Jones and T. K. Astarte

that inappropriate types are not used in expressions (for example, in an If
statement, the test part must be of type BooL). For constructs that contain
sub-components, each such component must also be well formed.

2 Imperative (Deterministic) Languages

The identifying feature of an imperative programming language is that it pro-
vides statements that change things. What is affected differs between languages:
changes might be updating a database or moving the position of part of a robot.
Here the discussion focusses on the challenge of modelling assignments to vari-
ables but the same principles apply to other kinds of command as long as a
suitable abstract model can be created for the target of the changes.

Assignments to variables destroy referential transparency: the value associ-
ated with an identifier changes during execution; values previous to an assign-
ment are destroyed. Furthermore, the order in which statements are executed
becomes important. An imperative program achieves its effect by executing a
sequence of assignments; language features such as conditionals and loops merely
orchestrate their execution.

As in applicative languages, programs make it possible to compute results
that are not directly available as operators of the language. It therefore fol-
lows that a subsidiary challenge is to provide tractable ways of reasoning about
the meaning of imperative programs whose specifications include operators that
are not basic to the language and which achieve their effect using destructive
assignments.

2.1 Operational Approach

John McCarthy was one of the first to present an operational approach to defin-
ing the semantics of programming languages. In his definition of ‘Micro-ALGOL’
[McC66], he described the approach as “defining a function ... giving the state
...that results from applying the program ...to the [initial state]”. McCarthy
was also careful to point out in his earlier paper on the topic [McC63] that this
is an abstract function, because the language in which it is expressed is more
abstract than either the language being described or, say, machine assembler
code. This approach to semantics is now commonly referred to as an abstract
interpreter because it interprets the various constructs of the language under
discussion.

The core idea of operational semantics remains the same as when McCarthy
first proposed it: meaning is given to a language with an abstract interpreter
defined in terms of changes to abstract states. The capital Greek letter X is
commonly used for the set of such states and, in simple cases, particular states
directly associate identifiers with values such as Booleans or integers:

Y = Id = ScalarValue

Scalar Value = B|Z

Challenges for Formal Semantic Description 183

As observed above, the key property of an imperative language is that assign-
ments can change the state. An interpretation function for statements would take
as parameters an (abstract) program and a state; its result is a final state. His-
torically, McCarthy [McC66] and even the early Vienna operational descriptions
(such as the VDL descriptions of PL/T [Lab66]) did write such interpretation
functions. In the current paper, the Structural Operational Semantics (SOS) style
of [Plo81] is used uniformly since this notation copes with non-determinism (cf.
Section4.1) and can thus be used for all of the operational descriptions discussed.

SOS rules like the one below for assignment can be read like a classic inter-
pretation function, when considered in a clockwise manner from bottom left, and
this often feels more natural when looking at deterministic languages. However,
it is important to remember that SOS rules are in fact inference rules: above the
line is a series of premises which must all be true for the rule to apply; below
the line is the conclusion. Each rule indicates a relation between the state before
computation and the state afterwards, given that a series of conditions holds;
it records a way of judging whether a particular computation is valid. This dis-
tinction becomes important when considering non-deterministic languages, as in
Sect. 4.1.

The basic judgements are relations (thus their signatures use powersets)
between pairs of program text and pre-state, and post-computation state. The
relation for statements is:

=L P((Stmt x) x)

The precise way in which each statement in a program is interpreted obviously
depends on the type of statement so one way to present a description would be
to write an interpretation function by cases. However, it is more convenient to
use pattern matching® and this approach is used in both operational semantics
and denotational semantics:

(rhs,o) =5 v

st

(mk-Assign(lhs, rhs),0) — o 1 {lhs — v)}

(The judgements for ezpression evaluation () are described below.)
Conditional statements are interpreted by cases as follows:

test, o) — true test, o) — false
(test, :
(then, o) =5 o (else, o) =5 o

(mk-If (test, then, else), o) = o (mk-If (test, then, else), o) = o
Interpreting iterative statements is slightly more involved:

(test,0) —% true

(body, o) = o (test,o) == false

(mk- While(test, body), o') =% o (mk- While(test, body), o) =% o

(mk- While(test, body), o) —= o'

8 Each VDM record type has an associated constructor function equivalent to a type
constructed by this function—thus mk-Assign : Id x Expr — Assign can be used to
distinguish the appropriate subset of Stmt in a pattern matching context.

184 C. B. Jones and T. K. Astarte

Notice that the state used in the third premise is the one produced from an
interpretation of the body—thus a convergence towards termination may occur.
The issue of non-terminating loops is addressed below.

The basic notion of state used above plays the same role as the environment
in a functional language and an evaluation function can be defined to determine
the values of expressions.

eval : Expr x ¥ — ScalarValue

The eval function above can be rewritten as a relation:?
L P((Bapr x) x ScVal)

which can be split by the cases in its syntactic classes
ecld

(¢.0) = a(c)

(el,0) =% vl
(e2,0) =% 02

(mk-Expr(el, PLUS, €2),0) % vl 4+ v2

Other cases should be obvious.

This seemingly simple description actually fixes an important property of
the language: the process of evaluating an expression is shown not to change the
state (i.e. the values of variables)—the same o is used throughout. Although the
key feature of functions is not addressed until Sect. 3, it is important to note
that functions with side effects would destroy this assumption.

Note that the rule for evaluation of variables does not require a variable
to be initialised and, of course, this could cause errors. In order to avoid this
problem, all variables can be automatically initialised in the rule for program
interpretation. These have been omitted for brevity. An alternative would be
to modify the evaluation rule for e € Id with an additional premise such as
e € domo.

If a program body is a single statement, this is most usefully a Compound (cf.
Fig. 1); its interpretation is defined by the interpretation of each of the statements
in (left to right) order. The rule for interpretation of Compound statements is
as follows.

(s,0) =5 o’

(mk-Compound (rest),c’) LI,
~

"

(mk-Compound([s] " rest), o) =5 o

Here the state produced by the interpretation of the first statement, s, in the
list is the state (o) in which to interpret the rest of the statement list, rest. As
this description is recursive, a base case is required and here this is reached once
the list of statements becomes empty. The rule is applied by pattern matching
against the input and at this point simply results in an unchanged state.

9 Technically, the relations =L, / = are the least relations satisfying the rules.

Challenges for Formal Semantic Description 185

(mk-Compound([]), o) o
The SOS rules given so far embody the so-called big step operational semantics,
as it directly defines the final state. This approach is also referred to as natural
semantics by Kahn [Kah87] and Nielson and Nielson [NN92]. Small step oper-
ational semantics has to define the granularity at which interference can occur
in concurrency and thus shows the steps between smaller portions of program
text and state—the overall interpretation of a program is then the transitive clo-
sure of the step relation. Big step tends to feel more intuitive in its handling of
multiple statements (and especially constructs like blocks); however, it is worth
mentioning the existence of small step concepts because these are used later
when concurrency comes into play in Sect. 4.

The core language could be extended to consider some form of external stor-
age such as files with the addition of Read/Write statements; this would be
accomplished simply by extending ¥ to include a collection of (named) files.

2.2 Denotational Approach

For simple languages, the difference between the operational and denotational
approaches is less marked than when language aspects such as jumps, non-
determinacy or the passing of functions as arguments have to be modelled. One
important point is that both approaches are built around an explicit notion of
state. The technical distinction between operational and denotational approaches
is, however, important and the point can be made by contrasting with the ear-
lier abstract interpreter phrase: denotational semantics is more like a compiler
in that it maps the source language into another language. For the simple lan-
guage that is defined operationally in Sect. 2.1, the mapping (M) would be into
functions from states to states (X — X). This state is the same as defined in the
previous section.'® Thus:

M : Stmt — (X — %)

and the convention of surrounding the (abstract) text parameters by [] is fol-
lowed.

A language is needed to define the functional denotations and Church’s
Lambda notation is the standard as it provides an easy way to write un-named
functions.!! As a simple example, the assignment statement is mapped to a func-
tion which takes a state and returns that state modified with a mapping from
the identifier to the evaluation of the right-hand-side expression in the previous
state.

M [mk-Assign(lhs, rhs)] = Ao - o t {Ihs — eval(rhs, o)}

10° An Oxford denotational semantics would insist that ¥ was also a general function
type; here the finite, constructed, mappings of VDM are used for ¥ because this is
not a significant issue in the comparison.

" Familiarity with this notation is assumed; a good learning resource is [AGM92].

186 C. B. Jones and T. K. Astarte

Much is made in the literature on denotational semantics about the mapping
to denotations being homomorphic in the sense that the structure of the com-
mands in the object language matches the structure of the denotations. So for
compound statements:'?

M[mk-Compound([])] = Ao - o
M [mk-Compound ([s] ~ rest)] = M [mk-Compound (rest)] o M[s]

Here it can be seen that the sequence concatenation on the left matches the
function composition on the right and thus the structure is preserved. The homo-
morphic property is that the denotation of the compound is built (only) from
the denotations of its constituent statements.

Note that the loss of referential transparency requires the state notion. This
is now so familiar that it is taken for granted but assignments themselves com-
plicate the denotational ideal of the homomorphic mapping.

It is not difficult to see that there is a clear connection between opera-
tional and denotational descriptions (postponing for the moment issues of non-

termination):'3

interpret : Stmt X ¥ — X
M : Stmt — X — %

M is the Curried form of interpret—they are essentially a Ao apart:
M{[s] = Ao - interpret(s, o)

But Sect. 2.4 makes clear that the surface difference has a significant impact on
reasoning about language descriptions.
The semantics of conditional statements is:

M [mk-If (test, then, else)] =
Ao - if M[test](o) = true then M [then](c) else M[else](o)

and again is similar to the operational semantics given in the previous section.
However, the denotational definition of While:

M [mk- While(test, body)] =
Ao - if M[test](o) = true
then M[mk — While(test, body)] o M [body]
else Ao - o

includes M [mk- While(test, body)] which makes it clear that fized points are
required (and this could be made completely explicit by using the fixed point
operator).

12 Tt would be more common to write a denotational description without the constructor
(mk-Compound) but it has been made clear above that larger languages require an
abstract syntax and choosing to keep the same treatment of syntactic objects in the
sketched operational and denotational descriptions is useful.

'3 Here, McCarthy’s original interpret-style description [McC66] is used to make the
point more clearly than can be done with the SOS rule.

14 In early versions of denotational semantics, Christopher Strachey used the Y com-
binator to denote the fixed point of a while loop (see for example [Wal67, p. 17]).

Challenges for Formal Semantic Description 187

2.3 Axiomatic Approach

The widest use of Hoare azioms [Hoa69] is in the verification or development of
programs. It was, however, precisely concerns about ‘leaving things undefined’
in language semantics that led Tony Hoare to propose Hoare triples.'®> Perhaps
the strongest case for specifying a range of permissible results is in languages
that allow concurrent execution and this topic is reviewed in Sect.4.2. Here,
the axiomatic method is explained with the simple sequential language that has
been introduced above.

In a deviation from the approach used in the paper so far, concrete syntax
will be used in the sections concerned with axiomatic semantics. This is purely
by convention: while there is no reason mot to use abstract syntax, doing so
would be unique amongst all other works on axiomatic semantics. The reason
for the lack of use of abstract syntax is probably connected to the small scale
(and relative syntactic paucity) of the languages to which axiomatic semantics
is normally applied.

A so-called Hoare triple consists of a pre condition, program text and a post
condition. These are now almost universally written as {P} S {Q}.1° In the
most widely adopted style, the pre and post conditions are predicates of single
states. Note that in contrast with operational and denotational semantics, these
states are not explicitly defined. The triple {P} S {Q} records a judgement
that if S is executed in a state that satisfies the predicate P, then (providing S
terminates) the resulting state will satisfy the predicate Q.

Given this interpretation, inference rules can be provided for each language
construct:

}g}} ‘;l {{Q{
2{R
Sequence (PYST; S2{E&}
{PVvb} Th{Q}

APV b} EL{Q}
E{P} if b then Th else El fi {Q}

—(PVvb}S{P}
@{P} while b do S od {~ bV P}

The predicate P in the rule for while is a loop invariant and this concept is
a key contribution to the way users think about programs even if they are not
reasoning completely formally. As noted above, programming constructs can be
used to extend what can be expressed in a language. It remains true however
that if for example a loop is used to compute factorial, the proof needs axioms
about factorial in addition to the inference rule for while statements.

!5 The background to [Hoa69] includes Bob Floyd’s [Flo67] and is traced in [Jon03];
since that publication, earlier drafts have been found of Hoare’s attempts to build
on his comment, made at a conference in 1964 [Ste66, pp. 142-143], that “What is
required is a method of describing a class of implementation ...”.

16 Tn Hoare’s original paper [Hoa69], he actually wrote P {S} @ but placing the braces
around the assertions emphasises their role as being non-executable.

188 C. B. Jones and T. K. Astarte

The caveat above about termination is important: the While rule does not
on its own establish that the loop will terminate. This property of correctness
assuming termination is often (badly) termed partial correctness. Dijkstra [Dij76]
proposed the addition of variant functions to reason about termination and these
were in fact employed without that nomenclature in both [Tur49] and [Flo67].
A more pleasing approach is indicated below when the switch to relational post
conditions is discussed.

In practice, users are unlikely to give a post condition in exactly the form
= bV P. Either the inference rules need to be complemented with weakening
rules such as:

P =P
(P} S {Q)

Q = Q
[comsequence pr st oy

or, perhaps more usefully, the other rules should be changed to reflect the poten-
tial for weakening—for example:

{P'} S{r}
Pvb = P

—1PV-b = @
!
I@{P} while b do S od {Q}

Having considered the sort of statement that controls the order in which basic
statements are executed, the axiomatic description of assignment statements
must be addressed. The now standard'” backwards rule can be written

I@{PZ} z =e{P}

where P? means substitution of e for x (with appropriate renaming to avoid
unwanted capture).

The deceptively simple—and therefore appealing—rule is not without its
problems. For example Krzysztof Apt in [Apt81] discusses the careful adjust-
ments required if the left-hand-side of the assignment is a reference to an ele-
ment of an array. Without wishing to undervalue what might be thought of as
a lucky notational success, it must be observed that the aforementioned lack of
referential transparency with variables in programs should prompt care when
copying their names into predicates.

Another reservation about the assignment rule arises when languages allow
multiple identifiers to refer to the same location (see Sect. 3.3); sticking to the

7 Floyd in [Flo67] used a forward assignment axiom that needs an existential quantifier
in its post condition; having discussed the developments with several people (includ-
ing King whose Effigy system [Kin69] used the backward rule) it would appear to be
the case that Bob Floyd spotted the simpler rule after his paper was published and
that David Cooper took the information from Carnegie Tech (where he had been for
over a year) to Tony Hoare in Belfast when Cooper gave a seminar there.

Challenges for Formal Semantic Description 189

assignment rule above would appear to imply that call-by-reference is modelled
by some form of copy rule.'®

In [Hoa69], Tony Hoare indicates that the axiomatic approach obviates the
need for an explicit model of state. This connects with the well-known frame
problem in the sense that it would be convenient if the only thing affected by an
assignment to z is the value of the variable with that name. This is, of course,
not the case in the presence of call-by-reference parameter passing.

It was realised early on'® that writing relatively large collections of axioms
could lead to inconsistencies. The standard way out of this danger is to provide a
model for which axioms can be shown to hold. Under Tony Hoare’s supervision,
this is exactly what Peter Lauer undertook in his thesis [Lau71]; a later—but
better-known—reference is [Don76]. Essentially, it is necessary to show that if
{P} S {Q} can be deduced from the axioms, then this agrees with the opera-
tional semantics as follows:

P(o)V ((8,0) "= ') = Q)
If termination is considered, it is also necessary to show:
P(o) = 30/'(S,0) =g

The sequence axiom above shows clearly why it is attractive to use post
conditions that are predicates of a single state. It should, however, be obvious
that this is not really a good idea! What a program is intended to realise is a
final state that relates in some meaningful way to its initial state. VDM has used
relational post conditions since before [Jon80]—Aczel showed in an unpublished
note [Acz82] how to present rules for such relational specifications in a convenient
way—and these rules of inference are used in subsequent VDM publications.
A particular advantage of explicitly using relations is that Dijkstra’s variant
functions are avoided simply by saying that the specification of the body of a
loop should be a well-founded relation.

Hoare’s 1969 paper is one of the most influential references in theoretical
computer science. It can be seen as the root of developments including Edsger
Dijkstra’s weakest pre conditions [DS90] and work on refinement calculus [Mor94,
BvW098]. Furthermore, this whole line of thought led, after [Hoa71b], to the use of
Floyd/Hoare axioms in the development process (rather than post facto proof).
Further discussion of these developments is available in [Jon03].

2.4 Reasoning

There are two distinct needs to reason based on a (formal) semantics. On the
one hand, a programmer might want to prove that a program satisfies its specifi-
cation; on the other, the designer of a compiler might want to justify the design

18 Various other extensions by Hoare include [CHT2,Hoa72a,Hoa71al; useful summaries
are [Apt81, Apt84].

19 Specifically at the April 1969 IFIP WG 2.2 meeting in Vienna at which Hoare first
presented his axiomatic method [Wal69]. See [JA16] for more comments on this
meeting.

190 C. B. Jones and T. K. Astarte

of a compiling algorithm. (In both cases, the more important issue is how to use
the semantics as the basis for a stepwise development but that does not affect
the distinction.) Here, both tasks are first explained in terms of operational
semantics.

In proving the correctness of a program, its specification should take the
form of a pre condition and a post condition. The first of these describes any
assumptions on the state before execution of the program; the second defines
the acceptability of the state produced after the program as a relation to the
initial state. The post condition is a predicate of two states (before and after)
because all but the most trivial specifications relate values in the post-state to
those in the pre-state (as with defining the result of a function with respect to
its arguments):

pre : ¥ — B
post : XX Y — B

This specification is related to the implementation by formulating the related
Proof Obligation for the program S:

Vo € 3 - pre(o) = post(o, interpret(S, o))

Discharging this proof obligation indicates that the program S satisfies the spec-
ification given.

In the task of proving correctness of translation, the proposed algorithm
might have the signature:

translate : Stmt — MachineCode

and the machine code might be given semantics by:?°

me-interpret : MachineCode X ¥ — X
This allows us to formulate the proof obligation as follows:
VS € Stmt,o € ¥ - me-interpret(translate(S), o) = interpret(S, o)

Although it is possible to reason about the earlier program correctness task
using either an operational?! or a denotational language description, that is
exactly the task for which axiomatic semantics was envisioned.??

In contrast, the task of reasoning about the correctness of a language trans-
lator appears to be best handled with one of the model oriented (i.e. operational
or denotational) description methods. The choice between operational and deno-
tational semantics as a basis for such proofs depends on a number of factors.
The higher level of abstraction in noting that denotations are functions (for
now, from states to states) certainly makes it easy to establish some properties

20 This has been deliberately simplified by ignoring the fact that the abstract states (x)
of the language description need to be reified to representations on the object-time
storage organisation.

2! This approach is explored in John Hughes’ thesis [Hugl1] and [HJOS].

22 As observed in Sect. 2.3, such proofs also require axioms of any new operators.

Challenges for Formal Semantic Description 191

of a language (e.g. the equivalence of a while loop to its unwrapping with a
conditional around the original loop).

For translation algorithms that closely follow the phrase structure of the
source language, denotational semantics is probably most appropriate because
it is easy to reason about the functional semantic objects. Robert Milne and
Christopher Strachey tackle implementation correctness in both the “Adams
Essay” [MS74] and the two-volume book [MS76] published after Strachey’s
death; members of the IBM Lab Vienna addressed compiler correctness using
denotational semantics as well. Unfortunately, as the latter were concerned with
the large (and Baroque) language PL/I, most of the publications are only avail-
able as lengthy technical reports (e.g. [BBH+74, Wei75,1zb75, BIJW75, Jon76]).

Unfortunately, many compiling techniques are not obviously algebraic in
form: optimisations such as register allocation or strength reduction®? cut right
across the phrase structure of the language and cause problems for descriptions
reliant on homomorphic denotations. In such cases, it might well be easier to
base the argument on an operational description—publications on using opera-
tional descriptions to reason about compiling include [MP67,Pai67, Luc68, Jon69,
JL71].

One point of comparison that is worth clarifying is that operational semantics
can be made to appear as compositional as denotational semantics. It is true that
early attempts to provide operational semantics of large languages (e.g. the VDL
descriptions of PL/I [WAB+68]) often fell into the trap of putting things in the
state that were unchanged by simple statements—McCarthy referred to this
as the grand state mistake. Furthermore, seeking a homomorphic mapping (to
functional denotations®*) encourages someone writing a denotational semantics
to consider exactly what must be in the state. But a small state SOS description
can closely follow the phrase structure of the language being described. The
main penalty for using, for example, an SOS description is that proofs have to
use induction over the steps of computation rather than, say, Scott induction
[Win93, p. 166].

One significant point in the comparison of denotational and operational
descriptions concerns termination. The program

while t #0do z :=z—1 od

will, for a negative initial value of z, simply iterate indefinitely. Reading a big step
(or natural) operational semantics as inference rules means that the hypotheses
cannot be discharged for such values. In contrast, the least fixed point of the
denotation of this program is exactly the partial function that takes states with
positive values for z to states where z = 0.

The greatest payoff for the level of abstraction in denotational semantics is
in proving deeper properties of a defined language.

23 Within a loop, a relatively expensive operation such as multiplication can be replaced
by addition if one of the operands is the control variable of the loop.

24 Finding neat functional denotations is not always possible. The topic of abnormal
exits such as goto statements is postponed to Sect.6 but forces considerable con-
tortions of the space of denotations.

192 C. B. Jones and T. K. Astarte

2.5 Section Summary

The main challenge presented by simple imperative languages is the need to
store and update values associated with variables when assignments are made.
The response given by both operational and denotational semantics is to model
the storage of the computer with an abstract state. There is no fundamental
difference between the states used in denotational and operational semantics.
Axiomatic semantics avoids an overt state by using value replacement, but the
collection of meta-variables used in assertions does essentially imply a state.

3 ALGOL-Like Blocks, Functions, Procedures

For the simple language presented above, the differences between the seman-
tic description styles seem minor. But that language lacks many features that
make real languages convenient for programmers. The challenge of describing
language features like named procedures and environmentally-separated blocks
adds significant complexity to the task of language description and begins to
show interesting differences in the response by each semantic school.

The need to model the local entities of different blocks and sharing of loca-
tions presents particular challenges, especially in the presence of more compli-
cated data structures such as arrays. Procedures add additional problems when
different parameter mechanisms are considered and so-called higher-order proce-
dures (whose parameters or results are procedures themselves) are particularly
problematic in some approaches. This section discusses these challenges and the
solutions in the different approaches.

It is interesting to observe how similar the treatment is in denotational and
operational approaches—and to note the key difference on procedure denota-
tions. Axiomatic semantics ends up taking a different tack by avoiding environ-
ments and instead using name substitution.

3.1 Local Naming

In first-order predicate calculus:
VeeX -(.VeeY- -(.)...3zeZ-(...)

the three bindings of z are distinct: they occupy separate name spaces. The need
for separate name spaces in programming languages is even stronger because
program texts are likely to be long.

Most programming languages offer ways of localising a name space so that
the same identifier can denote a different variable in nested blocks.

Stmt = - - - | Block

Block :: types : Id — ScalarType
body : Stmt

Challenges for Formal Semantic Description 193

In the simple storage model of Sect. 2, identifiers are mapped to denotations
(so far only values) and there is no need so far to change the underlying state
notion. The only delicate point is that — at block exit — the semantics must
recover the denotations of those identifiers that referred to a different variable
in the inner block.

Context conditions must also be reconsidered now that the same identifier
may denote different values and types throughout computation. This can be
achieved by requiring that usage of names in a well-formed block matches the
closest embracing declaration. A well-formed program now need only require
that every constituent block is well-formed.

3.2 Functions, Procedures and (Simple) Parameters

The pragmatics of functions and procedures is that they can be used to factor
out portions of program text that can be called from many places.?® From a
user point of view, procedure calls are statements that get executed in the order
dictated by their position in a list of statements whereas functions occur in
expressions.2® Functions and procedures require similar modelling techniques in
terms of the semantic objects required and are therefore treated together in the
remainder of this section.

Block
body : Stmt

Stmt = - - - | ProcCall

Context conditions of procedures are similar to those for blocks, but addi-
tionally require that the evaluated types of parameters in a procedure call match
those declared in the procedure definition. This means that the TypeMap object
must also store information on procedure definitions.

Functions and procedures have fixed denotations so they do not belong in
the store which contains values that can be changed (by assignment) within
statements. This can be handled by introducing an environment to contain the
denotations:

25 Although compiling techniques are not the main topic of this paper, it is worth
observing that implementing general recursion and parameter passing required the
invention of ingenious techniques—see [RR62]; there is a very detailed reconstruction
of the development of the idea of the Display mechanism in [vdH17].

It is worth noting that functions which can cause side effects considerably compli-
cate expression evaluation. At a minimum, they remove the possibility of saying that
eval : Expr x ¥ — Value because of the potential state change inherent if functions
with side effects are allowed within FExpr. Something that causes language descrip-
tions more trouble is that, unless the order of evaluation of expressions is strictly
defined (which is rare because languages tend to leave compilers the freedom to
optimise register use), evaluating expressions containing functions with side effects
results in non-determinism. This general topic is resumed in Sect. 4.

26

194 C. B. Jones and T. K. Astarte

Env = Id = Den

Den = FunDen|ProcDen)| - - -

The basic model is not difficult; that having been said, the features that have
been devised in various languages to make procedures more useful are myriad
and necessitate extension of the role of the environment. The passing of param-
eters of simple values (e.g. N, B) is straightforward: these are simply given new
identifiers within the local environment of the function or procedure. However,
more complex parameter passing mechanisms require more consideration.

3.3 Sharing

Thus far, it has been assumed that identifiers denote simple distinct values such
as numbers or Booleans. However, for reasons of efficiency, it is sometimes useful
to have more than one identifier referring to the same entity. Because of poten-
tial name clashes, making precise the semantics of such sharing is non-trivial.
Classically, logicians (e.g. in describing the Lambda calculus) have used a copy
rule with “suitable changes of names to avoid clashes” to describe such concepts.
For programming languages, the text of the procedure can be modified to copy
in the names, references or values of arguments, with appropriate renaming to
avoid name clashing. The ALGOL report [BBG+60] uses an informal descrip-
tion of this approach to attempt to fix the semantics; it can also be formalised,
as in the operational description of ALGOL 60 [ACJ72].

Many programming tasks require composite entities such as arrays which
gives rise to the notion of left hand values for elements of arrays. These consid-
erations are the main reasons for allowing different ways of passing arguments to
functions or procedures. Surprisingly many alternative parameter passing mech-
anisms have been devised and each has its use:

— Call by value is the most obvious and is appropriate for simple types—the
argument (which might be an expression) is evaluated and this value is copied
into the body of the function or procedure. Typically this is achieved by
creating a new memory allocation for the value and therefore modifications
to this variable are not seen in the calling scope.

— Copying of data can be reduced by using by location (or by reference) param-
eter passing, in which a pointer to the storage location of the argument is
passed instead of its value. This enables the function to modify the value of
the argument variable in a way that will affect the calling context.

— The full by name parameter mechanism of ALGOL 60 is even more challeng-
ing semantically: the denotations of arguments are evaluated anew each time
the respective parameter name is encountered within the body of the func-
tion, thereby potentially triggering multiple instances of side-effects. (This
specialises to by location mode when the argument (or actual parameter in

ALGOL speak) is a simple identifier.)

Challenges for Formal Semantic Description 195

— Call by value/result offers a useful compromise; by copying the value of each
argument into a new location and then returning the (potentially modified)
values to their original locations; it facilitates the return of multiple values
from procedures/functions but avoids the problem of the same location being
referred to by different identifiers.?”

In model-oriented methods, all of the above can be modelled with:2®

Env = Id ™ Den

Den = ---|Loc

Loc = ScalarLoc| ArrayLoc
ArrayLoc = N* = ScalarLoc

Y = ScalarLoc = Scalar Value

In SOS it is clear that the environment is not changed by simple statements
such as assignments as env is not in the range of the L, relation.

(rhs, env, o) 5 v

(mk — Assign(lhs, rhs), env, o) == o 1 {env(lhs) — v}

The task of creating and passing locations is handled in the semantics of blocks
and calling.

Similarly, in denotational semantics, the fact that environments are not
changed by simple statements is apparent from the Curried:

M :Stmt — Env — ¥ — X%

It is interesting the extent to which the description of semantic objects and a
few type definitions (i.e. no actual rules or formulae) can suggest (to an experi-
enced reader) the main points about a language. The rest of this paper is written
at this level of abstraction.

The passing of parameters in environment-based semantics is not difficult—
the semantic function, relation or mapping is extended to include an environment
as a parameter and this environment is modified at evaluation time. The param-
eter passing mechanism chosen affects the level at which the environment or its
sub-contents are modified.

It is, however, important to clarify how the context of a procedure or function
is captured in model-oriented approaches. In an operational approach, one part
of ProcDen/FunDen is its text. But this is not enough: if functions/procedures
can be declared in any block and called from any deeper block, then there must
be a way of fixing the environment in which they are to be executed, so that

27 Unless the same argument is passed to different parameters—but this is an easy
static check.

28 Records are similar to arrays but have fields that are not necessarily of the same
type; modelling records and combinations of arrays/records is straightforward.

196 C. B. Jones and T. K. Astarte

there is a proper evaluation of any parameter identifier that is passed in, and
no clashes with local names used within the text of the procedure. To address
this, an environment is usually part of the interpreting function or relation for
procedures and functions. This approach is essentially identical to the static
chain method for address resolution, in which each scope contains some meta-
information linking it to its direct lexical parent.

In denotational approaches, FunDen/ProcDen are functions in the standard
mathematical sense, with the appropriate environment bound in forming a clo-
sure.?? Environments are therefore also parameters to the meaning function, as
seen above.

3.4 Handling Parameters and Sharing in the Axiomatic Approach

Using by location parameter passing means that multiple identifiers refer to the
same location and, at a minimum, this undermines the axiom of assignment in
Hoare triples. So the axiomatic approach, tending to ignore the concepts of both
state and environment, uses quite a different strategy to model-oriented tech-
niques: a form of repeated name substitution is used, essentially a modification
of the copy rule described above.

The basic case for the invocation of a procedure is one where there are no
parameters and no side effects; calling a procedure is essentially adding the body
of the procedure to the main program body. The following simple rule (adapted
from [Pag81]) applies:

{P}S{Q}
N.body = S

I@{p} Calllﬁ {Q}

Adding parameters requires that variables in P and () referring to the param-
eters of N be replaced by the arguments (or argument expressions, or evaluated
argument expressions, depending on calling mechanism). Such substitution must
be conflict avoiding, but this is just generally assumed to be taking place rather
than explicitly mechanised in axiomatic descriptions.

{rys{Q}
N.body = S
N.params = [Ny, ..., Ny]

nocaron {Pgllg]} callN (Ey,..., E,) {QNI’ é”}

Ey,...,

Procedures with side effects can also be handled, and a way is provided in the
(incomplete) axiomatic ‘definition’ of Pascal. This approach expands the notion
of parameters to include all variables used globally within N and considers these
to be ‘implicit’ parameters. They are then handled in the same way as ‘explicit’

29 As is the case with axiomatic semantics in Sect. 2.3, strictly, the function itself is
not produced: the semantics maps to a Lambda expression that could be proved
equivalent to the mathematical function using properties about the function.

Challenges for Formal Semantic Description 197

parameters: functions are assumed to exist which map the initial values of both
explicit and implicit parameters onto their final values and these are used in the
assertion substitutions as in the rule Invocation’ above.

Arrays (even without sharing) need careful handling in axiomatic seman-
tics, as also discussed by [Apt81]. Allowing expressions as the subscripts in
subscripted variables can lead to problems, particularly when these expressions
reference the same array. One way to address this is to replace the whole array
with a new one modified at the index to which assignment has been made, but
this is not a particularly elegant solution.

3.5 Higher-Order Functions and Procedures

The pragmatics of allowing parameters to be procedures and functions is to
facilitate higher-order programs. Not only is this concept beloved by functional
language users, it is also a prime tool for abstraction in programming. For exam-
ple, the simple map list idea

map-list : (A — B) x A* — B*

provides a generic function that yields a sequence in which every element is
the result of applying the function in the first argument to the corresponding
element of the second argument; this is a small example of how high levels of
re-use and abstraction can be achieved. There are, of course, far more exotic
cases that introduce new ways of achieving recursion: see, for example, Knuth’s
“man and boy” example [Knu64] that was written as a challenge for ALGOL 60
compilers.

This topic is placed in a separate sub-section because it causes one of the
most telling differences between operational and denotational approaches. The
clue to the source of the problem is that, once functions can take functions as
arguments, the possibility arises that a function can be applied to itself. (This
also introduces a minor issue around types that is reviewed at the end of this
sub-section.)

The fact that, in operational semantics approaches, the denotation of a pro-
cedure is a pair (containing the text of the procedure and its statically containing
environment) means that no new concepts are needed to model the passing of
procedures or functions.

In denotational approaches, however, the denotation of procedures are actual
functions (as indicated in Sect.3.3). During the development of denotational
semantics, this gave rise to a serious mathematical problem: since the cardinal-
ity of the function space X — X must be greater than that of X, there is a
paradox with functions that can take themselves as arguments. There was thus
a point in time where Strachey’s idea of denotational (or at that time mathemat-
ical) semantics claimed that semantics could be given by mapping programs to
mathematical functions (expressed in the Lambda calculus), but the approach
was built on sand in the sense that no one could offer a model of the untyped
Lambda calculus.

198 C. B. Jones and T. K. Astarte

This problem was resolved with Dana Scott’s 1969 invention of domains with
suitably restricted functions. This was a major intellectual achievement and has
been widely described; perhaps the most accessible text remains [Sto77] but
Scott’s own [Sco80] provides a clear description of the context of his models of
the untyped Lambda calculus.

The challenge of modelling self-applying functions gives rise to the largest
divergence so far between operational and denotational approaches. It is inter-
esting to look more carefully at what is going on here. The homomorphic rule
says that the denotation of a construct should be built up from the denota-
tions of its constituent parts. But the name of a procedure can only be given a
denotation by storing it in an environment.

There is, in fact, another issue to be resolved for functions that can take
themselves as arguments; that issue concerns defining their type. Consider first
a binary tree structure built up with records:

BinTree :: left : [BmTree}

value : N

right : [BinTree}
The name of the type BinTree is used to express the recursive embeddings and
the marking of the fields as optional ensures that instances can be finite.

In order to declare a function type that can take itself as argument, there
must be a way of naming a function type. In fact, ALGOL 60 ducked this
problem: the language is almost strongly typed except for function and array
types. Both PL/I and Pascal offer such separate naming of function (entry)
types. It is worth noting that separating function types is necessary for mutually
recursive procedures because they cannot be given in an order such that each
definition precedes use.

3.6 Section Summary

Blocks and procedures bring new challenges to semantic descriptions, particu-
larly with the concerns of name sharing and local entities. Denotational and
operational semantics solve this problem by separating out an environment from
the state, but very cautious name substitution is needed in axiomatic semantics,
particularly when advanced parameter mechanisms are used. Procedures become
another kind of denotable value in model based semantics, but this requires
careful foundation for denotational semantics when higher-order functions are
allowed.

4 Modelling Non-deterministic Languages

There are two essentially different reasons that non-determinism figures in pro-

gramming languages:3’

30 A separate need to have a formal treatment of non-deterministic specifications arises
when considering program development—see Sect. 4.2.

Challenges for Formal Semantic Description 199

— the originator of a language might wish to allow freedom to the designers
of implementations to make optimisations such as common sub-expression
elimination;

— a language might encompass features that result in non-deterministic
execution—the most telling example is concurrency where differing progress
of threads can yield a range of results for executing a program.

It is clear that the specification (or description) of a language must fix the
full—and exact—range of acceptable outcomes. This matters both to program-
mers writing programs in the language and language implementers. The chal-
lenge is leaving some aspects of the language incompletely defined, but properly
constrained. This problem is further complicated by questions of granularity of
interleaving: a semantic description must be capable of describing granularity at
least as fine as that handled by the language. The difficulty of these points is a
significant challenge for the semantic description: having a sufficiently rich nota-
tion to allow communication of these aspects while remaining readable. These
challenges existed as soon as languages such as PL/I were addressed; the various
responses are interestingly different in appearance but do have a common core.

4.1 Operational Response

The pragmatics of concurrent programming languages should be obvious: both
low-level systems programming and high-level applications need to express algo-
rithms that accommodate differing run-time progress. In model-oriented seman-
tic approaches, there appears to be no alternative to recording the text of the
threads that remain to be executed and adjoining it to the shared state (X) that
is being updated. Such pairings of states and remaining thread texts are referred
to as configurations.

In order to capture the possible mergings of the threads, an operational
semantics must show the non-deterministic choice between the threads. Pre-
cisely how this is done fixes the granularity of merging.?! A first thought might
be to record a function that maps a configuration to the set of its possible
successor configurations but this becomes notationally messy. It is, of course,
equivalent to think of this as a relation between configurations and it tran-
spires that this is notationally much cleaner. There are many ways to define
such a relation. The approach utilised in the early operational semantics VDL
documents [Lab66,LW69], offered a way of describing such non-determinacy by
using control trees that contain a structured version of the program text that
still had to be executed—but these control trees were made part of the (grand)
state.>? Plotkin’s SOS [Plo81] provides much clearer descriptions because the

31 Many attempts to provide ways of reasoning about concurrent programs (see
Sect. 4.2) make the assumption that assignment statements are atomic; for brevity,
this simplification is followed here; but it must be realised that this level of granular-
ity is unrealistic for real implementations of languages due to the possibility of values
of variables being changed by parallel threads even during expression evaluation.

32 For a fuller discussion see [JA16, Sect. 3].

200 C. B. Jones and T. K. Astarte

non-determinacy is factored out of the rules themselves; it moves to the selec-
tion of a semantic rule (the remaining text and state are kept separate).
With the following definition of Parallel consisting of two threads

Parallel = (Thread x Thread)

Thread = Assign™

a large-step approach is inappropriate: an interpreting rule like %, from Sect. 2.1
would interpret an entire sequence of assignments as one. This limits the lan-
guage to executing the Parallel as though each Thread were atomic. What is
needed is a set of rules which each peel off and execute one of the remaining
statements in any non-empty thread. For this we use the relation for parallel
interpretation, P2 A small step semantics interprets the next assignment in
either the left or right thread:

par

—: P((Parallel x) x (Parallel x X))

(s,0) =% o
(([s] " restl, r),) P2 ((restl, 1), 0")

(s,0) =5 o
((1,[s] " restr), o) 25 ((1, restr), o”)

Using this approach, assignments may be interleaved in any order, as the choice
of which thread to interpret next is lifted to the choice of rule instantiation.

Extensions for other language features can be made in a similar style to
this; for example, a small step model of a while loop unwraps the loop with a
conditional surrounding it.

Note that so far the assumption is that assignment statements represent the
level of atomicity in the language. Allowing interference to take place at the
expression evaluation level is possible and makes two things clear:

— The way that SOS factors out the non-deterministic choice of rules that match
the current configuration is extremely helpful in preventing the issue of con-
currency from polluting a whole definition.??

— A further observation is that, in SOS descriptions, the non-determinacy with
expressions looks different from that with statements: with expressions, the
non-determinacy is resolved when a variable is accessed (or a function returns
a value) and the effect is to place a value in the evaluation tree; with state-
ments, the effect is reflected in a state change and the executed statement is
discarded from the resulting configuration.

33 But there is a sense in which the configurations are just a way of presenting the
control trees that were much criticised in VDL operational descriptions (The danger
with these control trees in a grand state semantics was that it was hard to determine
where they could or could not be updated.).

Challenges for Formal Semantic Description 201

Moving to a level of granularity larger than assignments, a programmer may
wish to make multiple statements executable only as an atomic block.

Stmt = - - - | Atomic
Atomic :: Assign*

(sl,o) =% o

([mk-Atomic(sl)] ™ rest, o) =% (rest,o”)

Atomicity is, of course, a key issue in the database world and it is interesting
to note the similarities to—and differences from—the programming language
universe. It would not be difficult to add data types to a programming language
that provide ways to declare and manipulate relations similar to those in the
standard relational model (see [Dat82]). As discussed at a Schloss Dagstuhl event
on atomicity [JLRWO5, Sect. 2.4.2], this then highlights the point that database
systems strive to prevent data races, where possible, by system-induced locking
(and, where pre-planning fails, to detect races and handle the recovery) whereas
programmers using typical programming languages are held responsible to plan
and control locking.

4.2 Axiomatic Response

As indicated in Sect.2.3, the axiomatic approach copes with general non-
determinism naturally. This observation that it is important to leave aspects
of a language undefined was made by Tony Hoare in [Ste66, pp. 142-143] and—
via multiple drafts—led him to his famous aziomatic basis paper [Hoa69].3*
Moreover, it became clear in using methods such as VDM that specifications
that allow a range of implementations are a powerful way of structuring design
decisions (see for example [Jon90, Abr10]).

Unfortunately the specific case of non-determinacy being caused by concur-
rent execution presents severe challenges for the axiomatic approach. The source
of the difficulty is precisely the interference that has to be modelled explicitly
in the operational descriptions of the previous sub-section. Before facing the
fact that post conditions alone are insufficient to specify components that suffer
interference, it is interesting to trace an early attempt to finesse that difficulty
and its more recent manifestation in (Concurrent) Separation Logic.

Hoare singled out the case of disjoint concurrency in [Hoa72b] and made the
observation that the post conditions of two parallel threads could be conjoined
providing there were no shared variables. Hoare’s 1972 paper covered normal
(stack) variables in which case the disjointness is simply a check of the alphabets
of the threads. John Reynolds introduced Separation Logic [Rey78,Rey89] to
support reasoning about heap variables (i.e. data structures that contain point-
ers and whose topology can be changed by updating said pointers). Reasoning

34 Of course, the soundness notion at the end of Sect. 2.3 needs to be enriched but this
is straightforward.

202 C. B. Jones and T. K. Astarte

about parallel threads that share a heap can be very delicate. An interesting
collaborative attack (see [BO16]) led to Concurrent Separation Logic [O’HOT]
which has spawned many variants—see [Parl0]. The essential idea is akin to
Hoare’s observation: what one wants to do is to conjoin the post conditions of
parallel threads but this is only valid if the interference is avoided. What sep-
aration logics facilitate is concise statements of the disjoint ownership of heap
addresses.>> More recently, [JY15] notes that certain cases of heap separation
can be viewed as reifications of abstract descriptions of separate entities.

In [O’HO7], it is suggested that separation logic should be used to reason
about race-free programs and Rely/Guarantee (R/G) conditions should be used
for racey programs.®® The initial publications on R/G go back to [Jon81]—
more recently the same underlying concept has been expressed in a refinement
calculus [Mor94,BvW98] style in [HJC14,JHC15]. This, in particular, makes
algebraic properties such as the distribution of rely and guarantee conditions
over sequential and parallel program operators much clearer.

The basic R/G idea is that acceptable interference should be documented
with rely conditions in the same way that sequential Floyd/Hoare logic records
acceptable starting states with pre conditions. Also, just as post conditions
express obligations on the running code, guarantee conditions record the upper
limit of interference that a component can inflict on its environment. Specifi-
cations of components using R/G conditions can then be used as a basis for
design justification. In a step where the sub-components are also specified using
R/G conditions, clear proof obligations exist to justify development steps for
parallel operators. Unsurprisingly, these proof obligations are more complicated
than those for sequential Floyd/Hoare logic but the essential property of com-
positionality is preserved.

Just as at the end of Sect. 2.3 the soundness of these inference rules needs to
be proved. It is possible to extend the operational semantics to carry an interfer-
ence relation and then to interpose it at points appropriate to the granularity of
the language; this approach is used in [CJ06,Col08]. Alternatively, Aczel traces
(see [Acz83] or the more accessible [dR01]) can provide a space of denotations
and [CHM16] does this in a way that conducts proofs at a significantly higher
level of abstraction.

Another method for modelling concurrency is that of process calculi or process
algebras, which include ACP [BK84], CSP [Hoa85], CCS [Mil89] and m-calculus
[SWO01]. CSP is particularly relevant due to its influence on the programming

35 This led Jones to make a suggestion at the MFPS meeting in 2005 where O’Hearn
presented concurrent separation logic that it might better be thought of as ownership
logic.

36 Although this seemingly simple dichotomy ignores the way in which non-interference
at an abstract level can be used to establish race freedom in a representation—a nice
example is Simpson’s Four-Slot implementation of Asynchronous Communication
Mechanisms in [JP11]; this paper also introduced the idea of a notation for possible
values which is, in turn, explored in [JH16].

Challenges for Formal Semantic Description 203

language occam, used extensively by Inmos [INMS8S8]. Although work on these
approaches grew out of considerations of language semantics, they are no longer
strictly within the scope of this paper.

4.3 Denotational Response

The key to the utility of a denotational semantic description is the choice of
a space of denotations which admit tractable reasoning. Denotations for the
language of threads above could be either relations over states or functions from
states to sets of states. In either case, there is a need to mark (potential) non-
termination. It is important to note that the problem of interference remains: just
as an operational semantics must indicate the granularity of thread switching by
the way in which configurations are changed and rematched, the relations must
be composed appropriately.

Thus far, there is a lot of similarity between denotational and operational
presentations of the semantics for non-determinacy resulting from concurrent
threads. The combination of non-determinism with higher order functions (cf.
Sect. 3.5) however poses extra difficulties for the denotational approach. Here
Power Domains [Plo76,Smy76] are required to preserve the mathematical prop-
erties that overcome the cardinality paradoxes related to higher-order language
constructs. Again operational semantics is inherently simpler because procedures
and functions are modelled simply by their texts.

4.4 Section Summary

The challenges of parallelism bring some variance in the response from the vari-
ous semantics. In operational semantics, the non-determinism is lifted to the rule
level and the real power of SOS to merely constrain acceptable solutions (rather
than generate a unique solution) is displayed. In some ways this is similar to cer-
tain axiomatic responses, where interference and interaction is constrained by
logical propositions. Denotational semantics runs into foundational technicality
since the traditional function can no longer be used as a base for denotations.
Instead, contortions of the semantic domains such as power domains are required.

5 Applying the Ideas to a Concurrent Object-Based
Language

This section outlines the semantics of a concurrent object-orient language known
as COOL,?" designed to be small enough to model in a small document but
realistic in its handling of the issues identified above.

37 COOL was inspired by — and is similar to - POOL [AR92]. COOL is used in teaching
a course on language semantics at Newcastle University.

204 C. B. Jones and T. K. Astarte

SIMULA 67 [DMNG68] was designed as a language in which simulation pro-
grams could be constructed; this provides a wonderful intuition for Object-
Oriented (OO) programming languages: objects are blocks that can be instanti-
ated as required,3® block descriptions are the class definitions, local variables are
the instance variables and procedures are methods. The scope of method names
is of course external to the class to enable objects to call methods defined for
other objects.?”

Key issues in the design of a concurrent language are how to generate and
synchronise concurrent threads. Although it gives an unconventional OO lan-
guage, the aims of this section can be achieved by limiting (instances of) objects
to running one method at a time and generating concurrency by arranging that
many objects can be active. This ensures that instance variables are free from
data races and, crucially, that the level of interference is in the hands of the pro-
grammer because only by sharing references (to objects) is interference possible.

The move from the unconstrained concurrency of threads in Sect.4 to a
simple OO-language can be summarised as follows:

— The language in Sect. 4 has dangerous data races because of the single shared
state.

— In COOL each object (instance) has a local state and can run as a thread.

— Such extreme separation needs to be tempered by providing some communi-
cation between the threads. This is easy to achieve by allowing methods to
be called in objects. Parameter passing is by value; object references can be
passed thus opening up both (controlled) sharing and passing of the ability
to invoke methods.

— Any object can create an object (that is an instance of a class) and receives
the unique Reference of the new object. The relevant statement might be
called New.

— The only way in which objects can begin execution is by having their methods
called by other objects (the exception is for the initial object which begins
execution at program start). Objects retain references to their client objects
and should eventually cease execution and return values.

— Thus far, there is no obvious source of the claimed concurrency but there are
many ways to create parallel threads:

e A class could have a designated initial method that begins to execute
in any newly created object of that class: instantiating multiple objects
results in concurrent execution. Similarly, a program could have a set of
designated objects which all begin execution when the program starts
(this latter approach is presented in the language description below).

38 When Ole-Johan Dahl made this comment to Jones, the whole OO area became
clearer.

39 The desire to add some notion of object orientation to languages such as C did not
necessarily result in languages with clear semantics. SmallTalk [GR83], however, is
a principled OO language and Bertrand Meyer’s Eiffel language [Mey88] adopts the
pre/post specification idea to provide contracts.

Challenges for Formal Semantic Description 205

e ABCL [Yon90] included a FutureCall statement that essentially forks the
called method—the join occurs when the client object executes a Wait
statement.

e An alternative explored in [San99] is to have a Release statement that pre-
maturely releases the client object before the server method is complete.
Using this strategy, the client can resume execution while the server con-
tinues to execute. This can be further enriched by a Delegate statement,
which passes responsibility to another object for executing and returning
to the client when complete.

— A language built around objects that lacks inheritance is sometimes referred
to as object-based but inheritance can be added to the features above by
viewing it as a way of instantiating nested blocks.

An operational semantics for such a language can be built around the fol-
lowing semantic objects.
The basic threads per object are keyed by References:

ObjectStore = Reference — ObjectInformation

This keeps a record of the states of all the objects that exist at a given time in
the execution of the program.

Each Objectinformation contains the information needed to determine the
current state and activity of the object:*°

ObjectInformation :: class : Id
o : Store
mode : READY|Run|Wait

The local Store of an object simply contains the current values of its variables:

Store = Id = Value

Value = [Reference]|Z|B

where the set Reference is infinite and nil ¢ Reference.

Modes of objects indicate their current activity status. Objects which are
READY are not currently doing anything; method calls may be made to such
objects. The other modes indicate some form of activity.

Run :: remainder : Statement*
client : Reference

Objects in Run mode are currently executing. It is important to retain the list
of statements which they have yet to execute, remainder, (compare with the
configurations of Sect.4.1) and the reference of the object which initiated their
execution, client, which will be awaiting the eventual return of a value (or a
special token indicating there is no return value).
Wait lhs : Id
remainder : Statement™
client : Reference

40 The texts of object classes are stored in a separate ClassStore, discussion of which
is postponed to the consideration of the Program type.

206 C. B. Jones and T. K. Astarte

Objects waiting for a value to be returned must keep track of the (local) variable
to which this value should be saved (lhs), the list of statements to which they
will resume executing (remainder) and the client by which they were originally
called.

Programs are defined as a specification of objects and some initialisation.

Program :: cs : ClassStore
startingclasses : Id*
startingmethods : Id*

The startingclasses sequence indicates which classes within the ClassStore should
be initialised at program commencement and startingmethods indicates which
methods within these classes should be executed.

ClassStore is the global directory of all classes in the program: the ObjectStore
is the store of dynamic information on the extant objects; the ClassStore holds
the static information on all possible objects.

ClassStore = Id = ClassInformation

ClassInformation :: variables : Id — Type
methods : Id - MethodInfo

The information here defines the variables declared in the class and their types

(there are no dynamic declarations in this language) and the methods available

to be called in the language. More detail need not be given on MethodInfo but it

contains parameter information and statements to be executed for each method.
Thus the main semantic relation has the type:

=L P((ClassStore x ObjectStore) x ObjectStore)

Once the program has commenced, the ClassStore and ObjectStore maps are
globally available to the semantics during execution. However, individual objects
have access to only the ClassStore object (to enable them to call methods in other
objects) and of course their own internal store.

A full definition of COOL is available on the web*! but it is a part of the
message of Sect.7 that it is possible to understand many design decisions of a
programming language solely from its semantic objects.

6 Abnormal Ordering

Many programming languages contain features that bring about a non-sequential
order of execution of statements. The most obvious example is the goto state-
ment (attacked by Dijkstra in [Dij68] and defended by Knuth in [Knu74]) but
it is certainly not the sole source of difficulty: (loop) breaks, exception mecha-
nisms and even returns from functions or procedures present similar challenges.
Expressed in denotational terms, the difficulty is that the homomorphic rule
cannot directly apply when the meaning of a construct depends on something
that is not present in the construct. Put another way, the obvious idea that the

41 http://homepages.cs.ncl.ac.uk/cliff.jones/COOL-WWW-version.pdf.

http://homepages.cs.ncl.ac.uk/cliff.jones/COOL-WWW-version.pdf

Challenges for Formal Semantic Description 207

semantics of the sequential composition of two statements should be the com-
position of the semantics of those two statements cannot apply when the first
statement appoints as its successor a statement elsewhere.

One response from operational semantics that shows rather clearly what has
to happen can be seen in VDL descriptions. In early Vienna Lab operational
semantics, an explicit control tree recorded the text that was still to be executed;
abnormal sequencing was modelled by surgery on this control tree.*?

Within the denotational camp, there are two rather different responses to the
challenges of abnormal ordering. Most researchers (and certainly those strongly
connected to Oxford) use Continuations. The core idea is to recover some sem-
blance of the homomorphic rule by making the denotation of a label represent
the effect of starting execution at that label. In order to develop such denotations
it is necessary to pass to every semantic function a denotation that corresponds
to the execution of the remainder of the program. This makes the semantics
higher order than one might expect and arguably more complicated than these
specific constructs require.

In contrast, VDM denotational descriptions (and the Isabelle formulations
of semantics in [NK13]) effectively extend the denotations from ¥ — ¥ to have
ranges that can represent abnormal results. The potential messiness caused by
the fact that something more complicated than functional composition is now
needed for sequential composition can be hidden by combinators.*>

Incorporating the exit ideas into SOS descriptions is something that has not
been published. It would be easy to do this explicitly with extra cases for all
language constructs but this would result in the heaviness visible in [ACJ72]—
much lengthier than what VDM achieves with combinators. Since the latter could
be read operationally, it should be possible to find a way of adding something
like the combinators to SOS rules.

An axiomatic approach to jumps is proposed in [CH72], although the authors
do acknowledge that jumps may be better avoided where possible and indeed
most axiomatic semantic descriptions skip the topic entirely. The essential idea
is adapted from earlier (operational) work by Landin [Lan65a,Lan65b], which
treated jumps like procedures whose body is the sequence of statements following
the label up until the end of its enclosing block. Rather than returning control
to the calling context, however, it is resumed from the end of the block enclosing
the label. Clint and Hoare’s approach is largely the same, although they prefer to
restrict the declaration of labels (and their ‘bodies’) to the beginning of blocks.
The rules do allow for labels to be declared anywhere within the block, with some
slight added complexity. However, only one label may be declared per block, and
further restrictions prevent jumping into compound and conditional statements.

42 Tt is interesting to note that [McC66] had an explicit program counter that could be
seen as a hint of what had to be done with control trees when a massive language
like PL/I (complete with concurrency) had to be described.

43 In [Mos11], Mosses makes the interesting link between VDM’s use of such combina-
tors and Eugenio Moggi’s monads [Mog89]. The differences between the VDM exit
scheme and continuations are teased apart by proofs of equivalence in [Jon78, Jon82].

208 C. B. Jones and T. K. Astarte

It is interesting to note that this approach bears some obvious similarities to
the continuations used in denotational semantics. Although notationally very
different, the idea of a label representing computation left to be performed is at
the core of both ideas.** There is also a clear comparison to the configurations
used in the operational semantics of Sect. 4.1 in which the text of the computation
yet to be executed is stored.

7 Closing Remarks

This section mentions some current research (Sect.7.1), related references
(Sect. 7.2) and offers some general conclusions.

7.1 Algebraic Semantics

Work on this topic is too recent to present a full evaluation; here only some
pointers and superficial comments are offered. For sequential programs, a search
for “Laws of Programming” was started in [HHJ+87]; Hoare [HvS12, HMSW11]
and others [Hay16, HCM+16] build on Kozen’s Kleene algebra with tests [Koz97]
to record algebraic laws that abstract from any detailed model of concurrent
programming languages. As with Boolean algebras, the algebraic laws normally
admit more than one model: saying, for example, that the sequence operator of
semicolon is associative but non-commutative does not preclude a semantics in
which statements are executed right to left.

The clear advantage of recording algebraic laws about programming constructs
isthe same as in classical algebra: if proofs can be conducted at that level of abstrac-
tion they are likely to be much easier and more general than any attempt to reason
about a model-oriented language description. A specific example is the use made
in [Hay16] of an interchange law to justify the equivalent of the most important
Rely/Guarantee parallel introduction rule. Furthermore, Hayes and colleagues
have gone on to present a Synchronous Program Algebra that also covers syn-
chronous event-based concurrent languages [HCM+16]. It is interesting that there
are echoes here of the program schema research [Pat67, LPP70] that was one of the
earliest avenues of programming language research.

7.2 Related References

Frank de Boer has provided a proof system for POOL [dB91] which he shows
to be consistent and complete with respect to an operational semantics. The
assertion language works on three levels and is not first order—although it is
not a higher order logic in the sense that, say, HOL is. There are also some
restrictions of the POOL language.

44 Indeed, in de Bakker’s book Mathematical Theory of Program Correctness, a book
showing the use of all kinds of semantics in program proof, de Bruin gives a similar
axiomatic rule but notes that it is hard to see clearly the correctness of this rule
or use the rule in proofs [dBDBZS80]. Instead, a denotational-style continuations
semantics is presented and proofs are built around that.

Challenges for Formal Semantic Description 209

Another paper by the current authors [AJ18] looks at four complete formal
descriptions of ALGOL 60, making technical comparisons as well as providing a
historical context for the development of the semantic styles in general and the
creation of the descriptions in particular.

Although not within the scope of this paper, which focuses on programming
languages, other kinds of formal language have benefited from the application of
semantic methods. Hardware description languages have been treated formally to
good effect: see [Gor95] and [BJQ2000] for semantics of Verilog and the collection
of papers [KB12] for VHDL. Semantic descriptions have also been written for
specification languages, such as CLEAR [BG80] and Z [Spi&8].

7.3 Conclusions

A number of the most important challenges presented by programming languages
to formal description are discussed in this paper.

— The challenge of associating identifiers with variable values is solved in oper-
ational and denotational semantics with a notion of state that is essentially
the same in both cases. In axiomatic semantics an explicit state is apparently
avoided, but the meta-variables used in assertions in essence form an implicit
state.

— In axiomatic semantics, phrase structuring in programming languages, such
as that used in blocks and procedures, is handled by copying text and careful
name substitution to avoid clashes. In model-oriented approaches, an abstract
environment associates identifiers with locations. This is once again similar
in both denotational and operational semantics.

— One area in which the semantic approaches differ significantly is handling
non-determinism and concurrency. In SOS, a relation is defined economically
by factoring out the non-determinism in the way in which rules match con-
figurations. In axiomatic approaches a number of options have been explored
including separation logic, temporal logic and rely/guarantee. Denotational
semantics requires complex refactoring of its domain spaces.

— The description of an illustrative concurrent object-oriented language indi-
cates that it may be easiest to use an SOS approach to bring all these aspects
together in a readable form.

Clearly, there are some genuine differences in the way that semantics are
recorded in the main approaches but there are also some common modelling
ideas that are obscured by superficial differences of presentation.

The complexity of formally recording the complete semantics of practical pro-
gramming languages—larger and more feature-rich than the one demonstrated in
this paper—seems unavoidable. Unfortunately, most programming languages are
not even described formally post facto, let alone during the design process. Sadly,
most programming languages are also not very good: they are hard to learn, too
packed with features whose interactions prove awkward, or their behaviour is
difficult to predict. One of the authors of the current paper has several times

210 C. B. Jones and T. K. Astarte

undertaken the task of writing a formal semantics for a language which had
been designed without the benefit of a formal model. The experience bears out
the argument that the payoff from formality comes from its early employment.
John Reynolds often made comments such as “Formality should be the midwife
of languages rather than the mortician”. With more careful use of formalism at
an appropriate point in the design phase, many unfortunate problems could be
avoided. Although working out a formal semantics is a non-trivial task, it takes
significantly less time than building a compiler and the former provides a better
basis for thought experiments than the latter. Furthermore, a wider knowledge
of formal semantic techniques could result in a staged approach:

— Working out and recording the semantic domains of a language is an
extremely cost-effective way of sorting out the fundamental concepts of a
language—see the discussion in Sect.5 and note that the semantic domains
for PL/T cover less than two pages of its 100 page description [BBH+74].

— Although denotational descriptions of concurrent languages are still a subject
of research, SOS descriptions provide a convenient way to make sure that the
more novel aspects of updating the state of a language have been properly
thought out.

— Again, it might not be practical to create a complete algebraic characteri-
sation of a language, but thinking about the question of equivalences that
should hold ought yield a language that is easier to use.

— Programmers using a language have to reason about the effects of their
programs—they might do this less formally than in a textbook but their
reasoning is in any case dependant on rules of inference about the constructs
of the language. A statement for which it is too difficult to provide such
rules is an indication that the programmer’s task has been made gratuitously
difficult.

Acknowledgements. The authors are extremely grateful to Mike Dodds, Shmuel
Tyszberowicz and Ian Hayes for constructive and detailed comments on drafts of this
paper. Some of the material was also presented at HaPoC-2017 in Oxford and useful
comments were made by participants. Funding for the authors’ research comes from
UK EPSRC both as a PhD studentship and the Strate Platform grant.

References

[Abrl0] Abrial, J.-R.: The Event-B Book. Cambridge University Press, Cam-
bridge (2010)
[ACJ72] Allen, C.D., Chapman, D.N., Jones, C.B.: A formal definition of ALGOL
60. Technical report 12.105, IBM Laboratory Hursley, August 1972
[Acz82] Aczel, P.: A note on program verification. Manuscript (private commu-
nication), Manchester, January 1982
[Acz83] Aczel, P.H.G.: On an inference rule for parallel composition. Private com-
munication (1983)
[AGM92] Abramsky, S., Gabbay, D.M., Maibaum, S.E. (eds.) Handbook of Logic
in Computer Science: Background: Computational Structures, vol. 2.
Oxford University Press Inc., New York (1992)

[AJ18]

[Ame89]
[ANST76]
[Apt81]
[Apt8d]
[AR92]
[Ast19]
[BBG+60]

[BBH+74]

[BGRO)

[BLIW75]

[BJQ2000]

[BK84]

[BOSO]
[BO16]
[Bur66]
[BvWOg]

[CGY0]

[CHT72]

[CHM16]

Challenges for Formal Semantic Description 211

Astarte, T.K., Jones, C.B.: Formal semantics of ALGOL 60: four descrip-
tions in their historical context. In: De Mol, L., Primiero, G. (eds.) Reflec-
tions on Programming Systems - Historical and Philosophical Aspects,
pp. 71-141. Springer Philosophical Studies Series (2018, in press)
America, P.H.M.: The practical importance of formal semantics. In: de
Bakker, JJW. (ed.) 25 jaar semantiek. CWI (1989)

ANSI: Programming language PL/I. Technical report X3.53-1976, Amer-
ican National Standard (1976)

Apt, K.R.: Ten years of Hoare’s logic: a survey—part I. ACM Trans. Pro-
gram. Lang. Syst. 3(4), 431-483 (1981)

Apt, K.R.: Ten years of Hoare’s logic: a survey - part II: nondeterminism.
Theor. Comput. Sci. 28, 83-109 (1984)

America, P., Rutten, J.: A layered semantics for a parallel object-oriented
language. Form. Asp. Comput. 4(4), 376-408 (1992)

Astarte, T.K.: Formalising meaning: a history of programming language
semantics. Ph.D. thesis, Newcastle University (2019, forthcoming)
Backus, J.W., et al.: Report on the algorithmic language ALGOL 60.
Numerische Mathematik 2(1), 106-136 (1960)

Beki¢, H., Bjgrner, D., Henhapl, W., Jones, C.B., Lucas, P.: A formal
definition of a PL/I subset. Technical report 25.139, IBM Laboratory
Vienna, December 1974

Burstall, R.M., Goguen, J.A.: The semantics of clear, a specification lan-
guage. In: Bjgorner, D. (ed.) Abstract Software Specifications. LNCS, vol.
86, pp. 292-332. Springer, Heidelberg (1980). https://doi.org/10.1007/3-
540-10007-5_41

Beki¢, H., Izbicki, H., Jones, C.B., Weissenbock, F.: Some experiments
with using a formal language definition in compiler development. Labo-
ratory note LN 25.3.107, IBM Laboratory Vienna, December 1975
Bowen, J.P., Jifeng, H., Qiwen, X.: An animatable operational semantics
of the Verilog hardware description language. In: Formal Engineering
Methods, pp. 199-207. IEEE (2000)

Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communica-
tion. Inf. Control 60(1-3), 109-137 (1984)

Bjgrner, D., Nest, O.N. (eds.): Towards a Formal Description of Ada.
LNCS, vol. 98. Springer, Heidelberg (1980). https://doi.org/10.1007/3-
540-10283-3

Brookes, S., O’Hearn, P.W.: Concurrent separation logic. ACM SIGLOG
News 3(3), 47-65 (2016)

Burstall, R.M.: Semantics of assignment. Mach. Intell. 2, 3-20 (1966)
Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduc-
tion. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-
1674-2

Carré, B., Garnsworthy, J.: Spark—an annotated Ada subset for safety-
critical programming. In: Proceedings of the Conference on TRI-ADA
1990, TRI-Ada 1990, pp. 392-402. ACM (1990)

Clint, M., Hoare, C.A.R.: Program proving: jumps and functions. Acta
Informatica 1(3), 214-224 (1972)

Colvin, R.J., Hayes, 1.J., Meinicke, L.A.: Designing a semantic model for
a wide-spectrum language with concurrency. Form. Asp. Comput. 29(5),
1-22 (2016)

https://doi.org/10.1007/3-540-10007-5_41
https://doi.org/10.1007/3-540-10007-5_41
https://doi.org/10.1007/3-540-10283-3
https://doi.org/10.1007/3-540-10283-3
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2

212 C. B. Jones and T. K. Astarte

[CJ06]

[Col0g]

[Dat82]

[dB91]

[dBDBZ80)
[Dij68]
[Dij76]

[DMN68]

[Don76]

[dRO1]

[DS90]

[Flo67]

[GorT5]

[Gor95]

[GP99]

[GR83]
[Hay16]

[HCM+16]

[HHJ+87]

Coleman, J.W., Jones, C.B.: Guaranteeing the soundness of
rely/guarantee rules. Technical report CS-TR-955, School of Com-
puting Science, University of Newcastle, March 2006

Coleman, J.W.: Constructing a tractable reasoning framework upon a
fine-grained structural operational semantics. Ph.D. thesis, Newcastle
University, January 2008

Date, C.J.: A formal definition of the relational model. ACM SIGMOD
Rec. 13(1), 18-29 (1982)

Boer, F.S.: A proof system for the language POOL. In: de Bakker,
J.W., de Roever, W.P., Rozenberg, G. (eds.) REX 1990. LNCS, vol.
489, pp. 124-150. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0019442

de Bakker, J.W., De Bruin, A., Zucker, J.: Mathematical Theory of Pro-
gram Correctness, vol. 980. Prentice-Hall International, London (1980)
Dijkstra, E.W.: Go to statement considered harmful. Commun. ACM
11(3), 147-148 (1968)

Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood
Cliffs (1976)

Dahl, O.-J., Myhrhaug, B., Nygaard, K.: SIMULA 67 common base lan-
guage. Technical report S-2, Norwegian Computing Center, Oslo (1968)
Donahue, J.E.: Complementary Definitions of Programming Language
Semantics. LNCS, vol. 42. Springer, Heidelberg (1976). https://doi.org/
10.1007/BFb0025364

de Roever, W.P.: Concurrency Verification: Introduction to Compo-
sitional and Noncompositional Methods. Cambridge University Press,
Cambridge (2001)

Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Seman-
tics. Springer, New York (1990). https://doi.org/10.1007/978-1-4612-
3228-5

Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Sym-
posium in Applied Mathematics. Mathematical Aspects of Computer Sci-
ence, vol. 19, pp. 19-32. American Mathematical Society (1967)
Gordon, M.: Operational reasoning and denotational semantics. Tech-
nical report STAN-CS-75-506, Computer Science Department, Stanford
University, August 1975

Gordon, M.: The semantic challenge of Verilog HDL. In: Proceedings of
theTenth Annual IEEE Symposium on Logic in Computer Science, LICS
1995, pp. 136-145. IEEE (1995)

Gabbay, M., Pitts, A.: A new approach to abstract syntax involving
binders. In: Proceedings of the 14th Annual IEEE Symposium on Logic
in Computer Science, LICS 1999. IEEE Computer Society (1999)
Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Imple-
mentation. Addison-Wesley, Boston (1983)

Hayes, 1.J.: Generalised rely-guarantee concurrency: an algebraic foun-
dation. Form. Asp. Comput. 28(6), 1057-1078 (2016)

Hayes, 1.J., Colvin, R.J., Meinicke, L.A., Winter, K., Velykis, A.: An
algebra of synchronous atomic steps. In: Fitzgerald, J., Heitmeyer, C.,
Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 352-369.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_22
Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672—
687 (1987). See Corrigenda in Commun. ACM 30(9), 770

https://doi.org/10.1007/BFb0019442
https://doi.org/10.1007/BFb0019442
https://doi.org/10.1007/BFb0025364
https://doi.org/10.1007/BFb0025364
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-3-319-48989-6_22

[HI73]

[HJOS]

[HJC14]

[HMRCS7]

[HMSW11]

[HMT87]

[Hoa69]

[HoaT71a]

[HoaT71b)

[HoaT2al
[HoaT72b)

[HoaT73]

[Hoa85]

[Hugll]

[HvS12]

[INMSS]

[Izb75]

[JA16]

[JH16]

[JHC15]

Challenges for Formal Semantic Description 213

Hanford, K.V., Jones, C.B.: Dynamic syntax: a concept for the definition
of the syntax of programming languages. In: Annual Review in Automatic
Programming, vol. 7, pp. 115-140. Pergamon (1973)

Hughes, J.R.D., Jones, C.B.: Reasoning about programs via operational
semantics: requirements for a support system. Autom. Softw. Eng. 15(3—
4), 299-312 (2008)

Hayes, 1.J., Jones, C.B., Colvin, R.J.: Laws and semantics for rely-
guarantee refinement. Technical report CS-TR-1425, Newcastle Univer-
sity, July 2014

Holt, R.C., Matthews, P.A., Rosselet, J.A., Cordy, J.R.: The Turing Pro-
gramming Language: Design and Definition. Prentice-Hall Inc., Upper
Saddle River (1987)

Hoare, C.A.R., Moller, B., Struth, G., Wehrman, I.: Concurrent Kleene
Algebra and its foundations. J. Log. Algebr. Program. 80(6), 266—296
(2011)

Harper, R., Milner, R., Tofte, M.: The semantics of standard ML: ver-
sion 1, Laboratory for Foundations of Computer Science, Department of
Computer Science, University of Edinburgh (1987). Hard copy

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576-580 (1969)

Hoare, C.A.R.: Procedures and parameters: an axiomatic approach. In:
Engeler, E. (ed.) Symposium on Semantics of Algorithmic Languages.
LNM, vol. 188, pp. 102-116. Springer, Berlin (1971)

Hoare, C.A.R.: Proof of a program: FIND. Commun. ACM 14(1), 39-45
(1971)

Hoare, C.A.R.: A note on the FOR statement. BIT 12(3), 334-341 (1972)
C.A.R. Hoare. Towards a theory of parallel programming. In Operating
System Techniques, pages 61-71. Academic Press, 1972

Hoare, C.A.R: Hints on programming language design. Invited Address
at SIGACT/SIGPLAN Symposium on Principles of Programming Lan-
guages, Boston, October 1973

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall,
Upper Saddle River (1985)

Hughes, J.R.D.: Reasoning about programs using operational semantics
and the role of a proof support tool. Ph.D. thesis, Newcastle University
(2011)

Hoare, T., van Staden, S.: In praise of algebra. Form. Asp. Comput.
24(4-6), 423-431 (2012)

INMOS. occam 2: Reference Manual. Prentice Hall (1988)

Izbicki, H.: On a consistency proof of a chapter of a formal definition
of a PL/I subset. Technical report TR 25.142, IBM Laboratory Vienna,
February 1975

Jones, C.B., Astarte, T.K.: An exegesis of four formal descriptions of
ALGOL 60. Technical report CS-TR-~1498 School of Computer Science,
Newcastle University, September 2016. Forthcoming as a paper in the
HaPoP 2016 Proceedings

Jones, C.B., Hayes, 1.J.: Possible values: exploring a concept for concur-
rency. J. Log. Algebraic Methods Program. 85, 972-984 (2016)

Jones, C.B., Hayes, 1.J., Colvin, R.J.: Balancing expressiveness in formal
approaches to concurrency. Form. Asp. Comput. 27(3), 465-497 (2015)

214 C. B. Jones and T. K. Astarte

[JL71]

[JLRWOS5]
[Jon69]
[Jon76]
[Jon78]
[Jong0]

[Jon81]

[Jon82]
[Jon90]
[Jon03]

[JP11]

[JY15]

[Kah87]

[KB12]
[Kin69]

[Knu64]
[Knu68]

[Knu74]

[Koz97]

[Lab66]

[Lan65a]

[Lan65b]

Jones, C.B., Lucas, P.: Proving correctness of implementation techniques.
In: Engeler, E. (ed.) Symposium on Semantics of Algorithmic Languages.
LNM, vol. 188, pp. 178-211. Springer, Heidelberg (1971). https://doi.
org/10.1007/BFb0059698

Jones, C.B., Lomet, D., Romanovsky, A., Weikum, G.: The atomic man-
ifesto: a story in four quarks. ACM SIGMOD Rec. 34(1), 63-69 (2005)
Jones, C.B.: A proof of the correctness of some optimising techniques.
Technical report LN 25.3.051, IBM Laboratory, Vienna, June 1969
Jones, C.B.: Formal definition in compiler development. Technical report
25.145, IBM Laboratory Vienna, February 1976

Jones, C.B.: Denotational semantics of goto: an exit formulation and its
relation to continuations. In Bjgrner and Jones [BJ78], pp. 278-304
Jones, C.B.: Software Development: a Rigorous Approach. Prentice Hall
International, Englewood Cliffs (1980)

Jones, C.B.: Development methods for computer programs including
a notion of interference. Ph.D. thesis, Oxford University, June 1981.
Printed as: Programming Research Group, Technical Monograph 25
Jones, C.B.: More on exception mechanisms. In: Bjgrner and Jones
[BJ82], Chap. 5, pp. 125-140

Jones, C.B.: Systematic Software Development using VDM, 2nd edn.
Prentice Hall International, Upper Saddle River (1990)

Jones, C.B.: The early search for tractable ways of reasoning about pro-
grams. IEEE Ann. Hist. Comput. 25(2), 26-49 (2003)

Jones, C.B., Pierce, K.G.: Elucidating concurrent algorithms via layers of
abstraction and reification. Form. Asp. Comput. 23(3), 289-306 (2011)
Jones, C.B., Yatapanage, N.: Reasoning about separation using abstrac-
tion and reification. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015.
LNCS, vol. 9276, pp. 3-19. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22969-0_1

Kahn, G.: Natural semantics. In: Brandenburg, F.J., Vidal-Naquet, G.,
Wirsing, M. (eds.) STACS 1987. LNCS, vol. 247, pp. 22-39. Springer,
Heidelberg (1987). https://doi.org/10.1007 /BFb0039592

Kloos, C.D., Breuer, P.: Formal Semantics for VHDL. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-1-4615-2237-9

King, J.C.: A program verifier. Ph.D. thesis, Department of Computer
Science, Carnegie-Mellon University (1969)

Knuth, D.E.: Man or boy. ALGOL Bull. 17(7) (1964)

Knuth, D.E.: Semantics of context-free languages. Theory Comput. Syst.
2(2), 127-145 (1968)

Knuth, D.E.: Structured programming with GO TO statements. Techni-
cal report STAN-CS-74-416, Computer Science Dept, Stanford Univer-
sity, May 1974

Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst.
19(3), 427-443 (1997)

Vienna Laboratory: Formal definition of PL/I (Universal Language Docu-
ment No. 3). Technical report 25.071, IBM Laboratory Vienna, December
1966

Landin, P.J.: A correspondence between ALGOL 60 and Church’s
lambda-notation: part I. Commun. ACM 8(2), 89-101 (1965)

Landin, P.J.: A correspondence between ALGOL 60 and Church’s
lambda-notation: part II. Commun. ACM 8(3), 158-167 (1965)

https://doi.org/10.1007/BFb0059698
https://doi.org/10.1007/BFb0059698
https://doi.org/10.1007/978-3-319-22969-0_1
https://doi.org/10.1007/978-3-319-22969-0_1
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1007/978-1-4615-2237-9

[Lau71]

[LPP70]

[Luc68]

[LW69]
[McC63]

[McC66]

[Men64]
[Mey88]
[Mil8o]

[Mog89]

[Mor94]
[Mos11]
[MP67]
[MS74]
[MS76]
[NK13]
[NN92]
[O’HO7]
[Pag81]

[Pai67]

[Par10]

[Pat67]

Challenges for Formal Semantic Description 215

Lauer, P.E.: Consistent formal theories of the semantics of programming
languages. Ph.D. thesis, Queen’s University of Belfast (1971). Printed as
TR 25.121, IBM Lab. Vienna

Luckham, D.C., Park, D.M.R., Paterson, M.S.: On formalised computer
programs. J. Comput. Syst. Sci. 4(3), 220-249 (1970)

Lucas, P.: Two constructive realisations of the block concept and their
equivalence. Technical report TR 25.085, IBM Laboratory Vienna, June
1968

Lucas, P., Walk, K.: On the formal description of PL/I. Annu. Rev.
Autom. Program. 6, 105-182 (1969)

McCarthy, J.: Towards a mathematical science of computation. In: IFIP
Congress, vol. 62, pp. 21-28 (1962)

McCarthy, J.: A formal description of a subset of ALGOL. In: Formal
Language Description Languages for Computer Programming, pp. 1-12.
North-Holland (1966)

Mendelson, E.: Introduction to Mathematical Logic. van Norstrand
(1964)

Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, Upper
Saddle River (1988)

Milner, R.: Communication and Concurrency. Prentice Hall, Upper Sad-
dle River (1989)

Moggi, E.: An abstract view of programming languages. Ph.D. thesis,
Laboratory for the Foundation of Computer Science, Edinburgh Univer-
sity (1989)

Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice Hall,
Upper Saddle River (1994)

Mosses, P.D.: VDM semantics of programming languages: combinators
and monads. Form. Asp. Comput. 23(2), 221-238 (2011)

McCarthy, J., Painter, J.: Correctness of a compiler for arithmetic expres-
sions. Math. Asp. Comput. Sci. 19 (1967)

Milne, R., Strachey, C.: A theory of programming language semantics.
Privately circulated (1974). Submitted for the Adams Prize

Milne, R., Strachey, C.: A Theory of Programming Language Semantics
(Parts A and B). Chapman and Hall, Boca Raton (1976)

Nipkow, T., Klein, G.: Concrete Semantics. A Proof Assistant Approach.
Springer, Cham (2013)

Nielson, H.R., Nielson, F.: Semantics with Applications: A Formal Intro-
duction. Wiley, New York (1992)

O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Com-
put. Sci. 375(1-3), 271-307 (2007)

Pagan, F.G.: Formal Specification of Programming Languages. Prentice-
Hall, Upper Saddle River (1981)

Painter, J.A.: Semantic correctness of a compiler for an ALGOL-like lan-
guage. Technical report AI Memo 44, Computer Science Department,
Stanford University, March 1967

Parkinson, M.: The next 700 separation logics. In: Leavens, G.T.,
O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217,
pp. 169-182. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15057-9_12

Paterson, M.S.: Equivalence problems in a model of computation. Ph.D.
thesis, University of Cambridge (1967)

https://doi.org/10.1007/978-3-642-15057-9_12
https://doi.org/10.1007/978-3-642-15057-9_12

216 C. B. Jones and T. K. Astarte

[Pic02]
[P1076]
[Plo81]
[Pra65]
[Rey78]

[Rey89]

[RR62]

[San99]

[Sco80]
[Smy76]

[Spiss]

[Ste66]
[Sto77]
[SWO1]

[Tur49]

[Tur09]
[vdH17]

[VWMPK69)

[WAB-+68]

[Wal67]

[Wal69)]

[Wei75]

Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge
(2002)

Plotkin, G.D.: A powerdomain construction. STAM J. Comput. 5, 452—
487 (1976)

Plotkin, G.D.: A structural approach to operational semantics. Technical
report DAIMI FN-19, Aarhus University (1981)

Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Dover Pub-
lications, New York (1965)

Reynolds, J.C.: Syntactic control of interference. In: Proceedings of Fifth
POPL, pp. 39-46. ACM (1978)

Reynolds, J.C.: Syntactic control of interference part 2. In: Ausiello, G.,
Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989. LNCS, vol.
372, pp. 704-722. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFDb0035793

Randell, B., Russell, L.J.: Discussions on ALGOL translation at Mathe-
matisch Centrum. English Electric Report W/AT, 841 (1962)

Sangiorgi, D.: Typed pi-calculus at work: a correctness proof of Jones’s
parallelisation transformation on concurrent objects. TAPOS 5(1), 25-33
(1999)

Scott, D.: Lambda calculus: some models, some philosophy. Stud. Log.
Found. Math. 101, 223-265 (1980)

Smyth, M.B.: Powerdomains. Technical report, Department of Computer
Science, University of Warwick, May 1976

Spivey, J.M.: Understanding Z—A Specification Language and its For-
mal Semantics. Cambridge Tracts in Computer Science 3. Cambridge
University Press (1988)

Steel, T.B.: Formal Language Description Languages for Computer Pro-
gramming. North-Holland, London (1966)

Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, Cambridge (1977)

Sangiorgi, D., Walker, D.: The w-Calculus: A Theory of Mobile Processes.
Cambridge University Press, Cambridge (2001)

Turing, A.M.: Checking a large routine. In: Report of a Conference
on High Speed Automatic Calculating Machines, pp. 67-69. University
Mathematical Laboratory, Cambridge, June 1949

Turner, R.: The meaning of programming languages. Am. Philos. Assoc.
Newsl. Philos. Comput. 9(1), 2-6 (2009)

van den Hove, G.: New insights from old programs: the structure of the
first ALGOL 60 system. Ph.D. thesis, University of Amsterdam (2017)
van Wijngaarden, A., Mailloux, B.J., Peck, J.E.L., Koster, C.H.A.:
Report on the algorithmic language ALGOL 68. Mathematisch Centrum,
Amsterdam, October 1969. Second printing, MR 101

Walk, K., et al.: Abstract syntax and interpretation of PL/I. Technical
report 25.082, IBM Laboratory Vienna, ULD Version II, June 1968
Walk, K.: Minutes of the 1st meeting of IFIP WG 2.2 on Formal Language
Description Languages. Kept in the van Wijngaarden archive: Held in
Porto Conte. Alghero, Sardinia (1967)

Walk, K.: Minutes of the 3rd Meeting of IFIP WG 2.2 on Formal Lan-
guage Description Languages, April 1969. Held in Vienna, Austria
Weissenbock. F.: A formal interface specification. Technical report TR
25.141, IBM Laboratory Vienna, February 1975

https://doi.org/10.1007/BFb0035793
https://doi.org/10.1007/BFb0035793

Challenges for Formal Semantic Description 217

[Win93] Winskel, G.: The Formal Semantics of Programming Languages. The
MIT Press (1993). ISBN 0-262-23169-7

[Wo0093] Woodman, M.: A taste of the Modula-2 standard. ACM SIGPLAN Not.
28(9), 15-24 (1993)

[Yon90] Yonezawa, A. (ed.): ABCL: An Object-Oriented Concurrent System.
MIT Press, Cambridge (1990). ISBN 0-262-24029-7

	Challenges for Formal Semantic Description: Responses from the Main Approaches
	1 Introduction
	1.1 Why Describe Semantics Formally
	1.2 Main Approaches
	1.3 Applicative Languages
	1.4 A Core Imperative Language

	2 Imperative (Deterministic) Languages
	2.1 Operational Approach
	2.2 Denotational Approach
	2.3 Axiomatic Approach
	2.4 Reasoning
	2.5 Section Summary

	3 ALGOL-Like Blocks, Functions, Procedures
	3.1 Local Naming
	3.2 Functions, Procedures and (Simple) Parameters
	3.3 Sharing
	3.4 Handling Parameters and Sharing in the Axiomatic Approach
	3.5 Higher-Order Functions and Procedures
	3.6 Section Summary

	4 Modelling Non-deterministic Languages
	4.1 Operational Response
	4.2 Axiomatic Response
	4.3 Denotational Response
	4.4 Section Summary

	5 Applying the Ideas to a Concurrent Object-Based Language
	6 Abnormal Ordering
	7 Closing Remarks
	7.1 Algebraic Semantics
	7.2 Related References
	7.3 Conclusions

	References

